Cho \(\tan\alpha=-3với\frac{3\pi}{2}< \alpha< 2\pi\). Tính \(\sin\alpha\)
Cho \(\tan \alpha = \frac{2}{3}\) với \(\pi < \alpha < \frac{{3\pi }}{2}\). Tính \(\cos \alpha \) và \(\sin \alpha \)
Ta có:
\(\begin{array}{l}{\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow {\left( {\frac{2}{3}} \right)^2} + 1 = \frac{1}{{{{\cos }^2}\alpha }}\\ \Rightarrow \frac{1}{{{{\cos }^2}\alpha }} = \frac{{13}}{9}\\ \Rightarrow \cos \alpha = \pm \frac{{3\sqrt {13} }}{{13}}\end{array}\)
Do \(\pi < \alpha < \frac{{3\pi }}{2} \Rightarrow \cos \alpha = - \frac{{3\sqrt {13} }}{{13}}\)
Ta có: \(\begin{array}{l}\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \frac{2}{3} = \sin \alpha :\left( { - \frac{{3\sqrt {13} }}{{13}}} \right)\\ \Rightarrow \sin \alpha = - \frac{{2\sqrt {13} }}{{13}}\end{array}\)
1) Cho sinα = \(\frac{3}{5}\) và \(\frac{\pi}{2}\)<α<π
a) cos α, tanα, cotα
b) sin(α - \(\frac{\pi}{3}\)) ; cos2α
2) cho cosα = 0,6 và \(\frac{3\pi}{2}\)<α<2π
a) sinα, tanα, cotα
b) sin2α ; cos(α + \(\frac{\pi}{6}\))
Tính các giá trị lượng giác của góc \(\alpha \), biết:
a) \(\cos \alpha = \frac{1}{5}\) và \(0 < \alpha < \frac{\pi }{2}\);
b) \(\sin \alpha = \frac{2}{3}\) và \(\frac{\pi }{2} < \alpha < \pi \).
c) \(\tan \alpha = \sqrt 5 \) và \(\pi < a < \frac{{3\pi }}{2}\);
d) \(\cot \alpha = - \frac{1}{{\sqrt 2 }}\) và \(\frac{{3\pi }}{2} < \alpha < 2\pi \).
a) Vì \(0<\alpha <\frac{\pi }{2} \) nên \(\sin \alpha > 0\). Mặt khác, từ \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) suy ra
\(\sin \alpha = \sqrt {1 - {{\cos }^2}a} = \sqrt {1 - \frac{1}{{25}}} = \frac{{2\sqrt 6 }}{5}\)
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{{2\sqrt 6 }}{5}}}{{\frac{1}{5}}} = 2\sqrt 6 \) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{\frac{1}{5}}}{{\frac{{2\sqrt 6 }}{5}}} = \frac{{\sqrt 6 }}{{12}}\)
b) Vì \(\frac{\pi }{2} < \alpha < \pi\) nên \(\cos \alpha < 0\). Mặt khác, từ \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\) suy ra
\(\cos \alpha = \sqrt {1 - {{\sin }^2}a} = \sqrt {1 - \frac{4}{9}} = -\frac{{\sqrt 5 }}{3}\)
Do đó, \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{2}{3}}}{{-\frac{{\sqrt 5 }}{3}}} = -\frac{{2\sqrt 5 }}{5}\) và \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{{-\frac{{\sqrt 5 }}{3}}}{{\frac{2}{3}}} = -\frac{{\sqrt 5 }}{2}\)
c) Ta có: \(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{{\sqrt 5 }}\)
Ta có: \({\tan ^2}\alpha + 1 = \frac{1}{{{{\cos }^2}\alpha }} \Rightarrow {\cos ^2}\alpha = \frac{1}{{{{\tan }^2}\alpha + 1}} = \frac{1}{6} \Rightarrow \cos \alpha = \pm \frac{1}{{\sqrt 6 }}\)
Vì \(\pi < \alpha < \frac{{3\pi }}{2} \Rightarrow \sin \alpha < 0\;\) và \(\,\,\cos \alpha < 0 \Rightarrow \cos \alpha = -\frac{1}{{\sqrt 6 }}\)
Ta có: \(\tan \alpha = \frac{{\sin \alpha }}{{\cos \alpha }} \Rightarrow \sin \alpha = \tan \alpha .\cos \alpha = \sqrt 5 .(-\frac{1}{{\sqrt 6 }}) = -\sqrt {\frac{5}{6}} \)
d) Vì \(\cot \alpha = - \frac{1}{{\sqrt 2 }}\;\,\) nên \(\,\,\tan \alpha = \frac{1}{{\cot \alpha }} = - \sqrt 2 \)
Ta có: \({\cot ^2}\alpha + 1 = \frac{1}{{{{\sin }^2}\alpha }} \Rightarrow {\sin ^2}\alpha = \frac{1}{{{{\cot }^2}\alpha + 1}} = \frac{2}{3} \Rightarrow \sin \alpha = \pm \sqrt {\frac{2}{3}} \)
Vì \(\frac{{3\pi }}{2} < \alpha < 2\pi \Rightarrow \sin \alpha < 0 \Rightarrow \sin \alpha = - \sqrt {\frac{2}{3}} \)
Ta có: \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} \Rightarrow \cos \alpha = \cot \alpha .\sin \alpha = \left( { - \frac{1}{{\sqrt 2 }}} \right).\left( { - \sqrt {\frac{2}{3}} } \right) = \frac{{\sqrt 3 }}{3}\)
Tính các giá trị lượng giác của góc α, nếu:
a) \(\sin \alpha = \frac{5}{{13}}\) và \(\frac{\pi }{2} < \alpha < \pi \)
b) \(\cos \alpha = \frac{2}{5}\) và \(0 < \alpha < 90^\circ \)
c) \(\tan \alpha = \sqrt 3 \) và \(\pi < \alpha < \frac{{3\pi }}{2}\)
d) \(\cot \alpha = \frac{1}{2}\) và \(270^\circ < \alpha < 360^\circ \)
Cho \(\tan\alpha=-3\) và \(\dfrac{\pi}{2}< \alpha< \pi.\)Tính \(\cos\alpha\),\(\sin\alpha\),\(\cot\alpha\)
Lời giải:
$\frac{\pi}{2}< a< \pi$ nên $\sin a>0; \cos a< 0$
$-3=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=-3\cos a$
$\Rightarrow \sin ^2a=9\cos ^2a$
$\Rightarrow 10\sin ^2a=9(\sin ^2a+\cos ^2a)=9$
$\Rightarrow \sin ^2a=\frac{9}{10}$
$\Rightarrow \sin a=\frac{3}{\sqrt{10}}$
$\cos a=\frac{\sin a}{-3}=\frac{-1}{\sqrt{10}}$
$\cot a=\frac{1}{\tan a}=\frac{-1}{3}$
Biết \(\sin\alpha\)= \(-\frac{2}{3}\)và \(-\pi< \alpha< \frac{-\pi}{2}\).Tính:
1.\(\tan\alpha\)và \(\cos3\alpha\)
2.Q= \(2\cos(2\alpha+\frac{\pi}{3})\)
3.P= \(\sin(\alpha+\frac{5\pi}{2})-3\cos(\alpha-\frac{11\pi}{2})+2\sin(3\pi+\alpha)\)
Tính các giá trị lượng giác của góc \(\alpha \) trong mỗi trường hợp sau:
a) \(\sin \alpha = \frac{{\sqrt {15} }}{4}\) với \(\frac{\pi }{2} < \alpha < \pi \)
b) \(\cos \alpha = - \frac{2}{3}\) với \( - \pi < \alpha < 0\)
c) \(\tan \alpha = 3\) với \( - \pi < \alpha < 0\)
d) \(\cot \alpha = - 2\) với \(0 < \alpha < \pi \)
a) Ta có \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1\)
mà \(\sin \alpha = \frac{{\sqrt {15} }}{4}\) nên \({\cos ^2}\alpha + {\left( {\frac{{\sqrt {15} }}{4}} \right)^2}\,\,\, = \,1 \Rightarrow {\cos ^2}\alpha = \frac{1}{{16}}\)
Lại có \(\frac{\pi }{2} < \alpha < \pi \) nên \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \frac{1}{4}\)
Khi đó \(\tan \alpha = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} = - \sqrt {15} ;\cot \alpha = \frac{1}{{\tan \alpha }} = - \frac{1}{{\sqrt {15} }}\)
b)
Ta có \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1\)
mà \(\cos \alpha = - \frac{2}{3}\) nên \({\sin ^2}\alpha + {\left( {\frac{{ - 2}}{3}} \right)^2}\,\,\, = \,1 \Rightarrow {\sin ^2}\alpha = \frac{5}{9}\)
Lại có \( - \pi < \alpha < 0\) nên \(\sin \alpha < 0 \Rightarrow \sin \alpha = - \frac{{\sqrt 5 }}{3}\)
Khi đó \(\tan \alpha = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} = \frac{{\sqrt 5 }}{2};\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{2}{{\sqrt 5 }}\)
c)
Ta có \(\tan \alpha = 3\) nên
\(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{3}\)
\(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \,\,\, = \,1 + {3^2} = 10\,\, \Rightarrow {\cos ^2}\alpha = \frac{1}{{10}}\)
Mà \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\sin ^2}\alpha = \frac{9}{{10}}\)
Với \( - \pi < \alpha < 0\) thì \(\sin \alpha < 0 \Rightarrow \sin \alpha = - \sqrt {\frac{9}{{10}}} \)
Với \( - \pi < \alpha < - \frac{\pi }{2}\) thì \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \sqrt {\frac{1}{{10}}} \)
và \( - \frac{\pi }{2} \le \alpha < 0\) thì \(\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {\frac{1}{{10}}} \)
d)
Ta có \(\cot \alpha = - 2\) nên
\(\tan \alpha = \frac{1}{{\cot \alpha }} = - \frac{1}{2}\)
\(\frac{1}{{{{\sin }^2}\alpha }} = 1 + co{{\mathop{\rm t}\nolimits} ^2}\alpha \,\,\, = \,1 + {( - 2)^2} = 5\,\, \Rightarrow {\sin ^2}\alpha = \frac{1}{5}\)
Mà \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\cos ^2}\alpha = \frac{4}{5}\)
Với \(0 < \alpha < \pi \) thì \(\sin \alpha > 0 \Rightarrow \sin \alpha = \sqrt {\frac{1}{5}} \)
Với \(0 < \alpha < \frac{\pi }{2}\) thì \(\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {\frac{4}{5}} \)
và \(\frac{\pi }{2} \le \alpha < \pi \) thì \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \sqrt {\frac{4}{5}} \)
Cho tanα = √3 với 0 < α < π/2. Tính sinα, cos2α, sin(2α - π/3), tan(α + π/4)
\(0< a< \frac{\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina>0\\cosa>0\end{matrix}\right.\)
\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cos^2a=\frac{1}{1+tan^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}\)
\(\Rightarrow cosa=\frac{1}{2}\Rightarrow sina=cosa.tana=\frac{\sqrt{3}}{2}\)
\(cos2a=2cos^2a-1=-\frac{1}{2}\)
\(sin2a=2sina.cosa=\frac{\sqrt{3}}{2}\)
\(\Rightarrow sin\left(2a-\frac{\pi}{3}\right)=sin2a.cos\frac{\pi}{3}-cos2a.sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}\)
\(tan\left(a+\frac{\pi}{4}\right)=\frac{tana+tan\frac{\pi}{4}}{1-tana.tan\frac{\pi}{4}}=-2-\sqrt{3}\)
Tính các giá trị lượng giác của góc 2\(\alpha \), biết:
a, \(\sin \alpha = \frac{{\sqrt 3 }}{3},0 < \alpha < \frac{\pi }{2}\)
b, \(\sin \frac{\alpha }{2} = \frac{3}{4},\pi < \alpha < 2\pi \)
\(a,sin^2\alpha+cos^2\alpha=1\\ \Rightarrow cos\alpha=\pm\sqrt{1-sin^2\alpha}=\pm\sqrt{1-\left(\dfrac{\sqrt{3}}{3}\right)^2}=\pm\dfrac{\sqrt{6}}{3}\)
Vì \(0< \alpha< \dfrac{\pi}{2}\Rightarrow cos\alpha=\dfrac{\sqrt{6}}{3}\)
\(sin2\alpha=2sin\alpha cos\alpha=2\cdot\dfrac{\sqrt{3}}{3}\cdot\dfrac{\sqrt{6}}{3}=\dfrac{2\sqrt{2}}{3}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(\dfrac{\sqrt{6}}{3}\right)^2-1=\dfrac{1}{3}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{2\sqrt{2}}{3}}{\dfrac{1}{3}}=2\sqrt{2}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\)
\(b,sin^2\dfrac{\alpha}{2}+cos^2\dfrac{\alpha}{2}=1\\ \Rightarrow cos\dfrac{\alpha}{2}=\pm\sqrt{1-sin^2\dfrac{\alpha}{2}}=\pm\sqrt{1-\left(\dfrac{3}{4}\right)^2}=\pm\dfrac{\sqrt{7}}{4}\)
Vì \(\pi< \alpha< 2\pi\Rightarrow\dfrac{\pi}{2}< \dfrac{\alpha}{2}< \pi\Rightarrow cos\alpha=-\dfrac{\sqrt{7}}{4}\)
\(sin\alpha=2sin\dfrac{\alpha}{2}cos\dfrac{\alpha}{2}=2\cdot\dfrac{3}{4}\cdot\left(-\dfrac{\sqrt{7}}{4}\right)=-\dfrac{3\sqrt{7}}{8}\\ cos\alpha=2cos^2\dfrac{\alpha}{2}-1=2\cdot\left(-\dfrac{\sqrt{7}}{4}\right)^2-1=-\dfrac{1}{8}\\sin2\alpha=2sin\alpha cos\alpha=2\cdot\left(-\dfrac{3\sqrt{7}}{8}\right)\cdot\left(-\dfrac{1}{8}\right)=\dfrac{3\sqrt{7}}{32}\\ cos2\alpha=2cos^2\alpha-1=2\cdot\left(-\dfrac{1}{8}\right)^2-1=-\dfrac{31}{32}\\ tan2\alpha=\dfrac{sin2\alpha}{cos2\alpha}=\dfrac{\dfrac{3\sqrt{7}}{32}}{-\dfrac{31}{32}}=-\dfrac{3\sqrt{7}}{31}\\ cot2\alpha=\dfrac{1}{tan2\alpha}=\dfrac{1}{-\dfrac{3\sqrt{7}}{31}}=-\dfrac{31\sqrt{7}}{21}\)