Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hoàng Minh
Xem chi tiết
Lấp La Lấp Lánh
1 tháng 10 2021 lúc 15:25

Tham khảo:

1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24

 

Lấp La Lấp Lánh
1 tháng 10 2021 lúc 15:36

\(\sqrt{x+3}+2\sqrt{x}=2+\sqrt{x\left(x+3\right)}\left(đk:x\ge0\right)\)

\(\Leftrightarrow x+3+4x+4\sqrt{x\left(x+3\right)}=4+x\left(x+3\right)+4\sqrt{x\left(x+3\right)}\)

\(\Leftrightarrow5x+3=4+x^2+3x\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\left(tm\right)\)

 

 

 

 

Bùi Thanh Tâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 22:04

a) Ta có: \(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\3x+3\sqrt{2}+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\3x=-3\sqrt{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=\dfrac{-3\sqrt{2}-1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{2};\dfrac{-3\sqrt{2}-1}{3}\right\}\)

b) Ta có: \(x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}-2x+\sqrt{5}\right)=0\)

\(\Leftrightarrow-x\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{5}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-\sqrt{5}\right\}\)

nini
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 11 2023 lúc 20:15

Bài 1:

\(\sqrt{\left(4-\sqrt{5}\right)^2}+\sqrt{5+2\sqrt{5}+1}\)

\(=\left|4-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=4-\sqrt{5}+\sqrt{5}+1=5\)

Bài 2:

a: ĐKXĐ: x>=3

\(\sqrt{x-3}=6\)

=>x-3=36

=>x=36+3=39(nhận)

b: ĐKXĐ: \(x\in R\)

\(\sqrt{\left(x-3\right)^2}=12\)

=>\(\left|x-3\right|=12\)

=>\(\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)

Bài 3:

a: \(P=\left(\dfrac{3-x\sqrt{x}}{3-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\dfrac{3-\sqrt{x}}{3-x}\right)\)

\(=\dfrac{3-x\sqrt{x}+\sqrt{x}\left(3-\sqrt{x}\right)}{3-\sqrt{x}}\cdot\dfrac{3-\sqrt{x}}{3-x}\)

\(=\dfrac{3-x\sqrt{x}+3\sqrt{x}-x}{3-x}\)

\(=\dfrac{-\sqrt{x}\left(x-3\right)-\left(x-3\right)}{-\left(x-3\right)}=\dfrac{\left(x-3\right)\left(\sqrt{x}+1\right)}{x-3}=\sqrt{x}+1\)

b: \(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{x+\sqrt{x}}\right):\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right):\dfrac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

c: \(A=\sqrt{3x-1}+3\cdot\sqrt{12x-4}-\sqrt{6^2\left(3x-1\right)}+\sqrt{5}\)

\(=\sqrt{3x-1}+6\sqrt{3x-1}-6\sqrt{3x-1}+\sqrt{5}\)

\(=\sqrt{3x-1}+\sqrt{5}\)

d: \(A=\left(\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\dfrac{a+2}{a-2}\)

\(=\left(\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}\right)\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a-2}{a+2}\)

\(=\dfrac{2\left(a-2\right)}{a+2}\)

....
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 6 2021 lúc 11:27

a.

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+2}=a\\\sqrt[3]{x-2}=b\end{matrix}\right.\) ta được:

\(2a^2-b^2=ab\)

\(\Leftrightarrow\left(a-b\right)\left(2a+b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=-b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\8a^3=-b^3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=x-2\left(vô-nghiệm\right)\\8\left(x+2\right)=-\left(x-2\right)\end{matrix}\right.\)

\(\Leftrightarrow x=-\dfrac{14}{9}\)

Nguyễn Việt Lâm
26 tháng 6 2021 lúc 11:30

b.

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{65+x}=a\\\sqrt[3]{65-x}=b\end{matrix}\right.\)

\(\Rightarrow a^2+4b^2=5ab\)

\(\Leftrightarrow\left(a-b\right)\left(a-4b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a^3=b^3\\a^3=64b^3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}65+x=65-x\\65+x=64\left(65-x\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
26 tháng 6 2021 lúc 11:31

c.

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x+2}=a\\\sqrt[3]{x+1}=b\end{matrix}\right.\)

\(\Rightarrow a+b=1+ab\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a^3=1\\b^3=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=1\\x+1=1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Hoàng Phú Lợi
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 20:28

loading...

loading...

loading...

༄NguyễnTrungNghĩa༄༂
Xem chi tiết
Phùng Minh Phúc
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:40

ĐK: \(x - 1 \ge 0\,\, \Leftrightarrow \,\,x \ge 1\)

\( \Rightarrow \) TXĐ của phương trình là: \(D = \left[ {1; + \infty } \right)\)

Giải phương trình: \(\sqrt {2{x^2} - 3}  = x - 1\)

\(\begin{array}{l} \Leftrightarrow \,\,{\left( {\sqrt {2{x^2} - 3} } \right)^2} = {\left( {x - 1} \right)^2}\\ \Leftrightarrow \,\,2{x^2} - 3 = {x^2} - 2x + 1\\ \Leftrightarrow \,\,{x^2} + 2x - 4 = 0\\ \Leftrightarrow \,\,\left[ {\begin{array}{*{20}{c}}{x =  - 1 + \sqrt 5 }\\{x =  - 1 - \sqrt 5 }\end{array}} \right.\end{array}\)

Ta thấy \(x =  - 1 + \sqrt 5 \) thỏa mãn.

Vậy tập nghiệm của phương trình là: \(S = \left\{ { - 1 + \sqrt 5 } \right\}\)

Chọn C.

Đào Thu Hiền
Xem chi tiết