Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Minh Thư
Xem chi tiết
ta nguyễn
Xem chi tiết
#Mun   ^^
19 tháng 3 2022 lúc 3:07

The Moon
Xem chi tiết
Nguyễn Huy Tú
4 tháng 2 2022 lúc 11:09

a, Xét (O) có : 

^AMB = 900 ( góc nt chắn nửa đường tròn ) 

=> ^DMA = 900

Xét tứ giác ACMD có : 

^ACD = ^DMA = 900

mà 2 góc này kề nhau, cùng nhìn cạnh AD 

Vậy tứ giác ACMD là tứ giác nt 1 đường tròn 

b, Vì tứ giác ACMD là tứ giác nt 1 đường tròn 

=> ^HNM = ^HDM ( góc nt cùng chắn cung HM ) (1) 

^BNM = ^MAB ( góc nt cùng chắn cung BM ) (2) 

Từ (1) ; (2) => ^HDM = ^MAB 

Xét tam giác CAH và tam giác CDB có : 

^ACH = ^DCB = 900

^CAH = ^CDB ( cmt ) 

Vậy tam giác CAH ~ tam giác CDB (g.g) 

=> CA/CD = CH/BC => AC.BC = CH.CD 

Tuấn Đỗ
Xem chi tiết
Pham anh quan
Xem chi tiết
Duyên Thảo
Xem chi tiết
Công Sáng
Xem chi tiết
Etermintrude💫
26 tháng 3 2021 lúc 21:39

undefinedundefined

Nguyễn Lê Phước Thịnh
26 tháng 3 2021 lúc 21:42

a) Xét (O) có 

\(\widehat{AMB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AMB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{FMB}=90^0\)

Xét tứ giác BCFM có

\(\widehat{FCB}\) và \(\widehat{FMB}\) là hai góc đối

\(\widehat{FCB}+\widehat{FMB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BCFM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

Hòa Vũ
Xem chi tiết
Nguyễn Tất Đạt
14 tháng 7 2019 lúc 21:00

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

Nguyễn Lê Bảo Anh
Xem chi tiết