a giải PT x^2-x-12=0
b tìm số nguyên x;y thỏa mãn xy^2+3x=16+3y^2
giúp mình
1 ) giải và biện luận pt sau :
A (m-1)x2+7x-12=0
B x2−2(m−1)x−(2m+1)=0
2) tìm m để pt x2-2(m+1)x+m2-1=0 có 2 nghiệm phân biệt
\(1,\\ a,ĐK:m\ne1\\ \Delta=49+48\left(m-1\right)=48m+1\\ \text{PT vô nghiệm }\Leftrightarrow48m+1< 0\Leftrightarrow m< -\dfrac{1}{48}\\ \text{PT có nghiệm kép }\Leftrightarrow48m+1=0\Leftrightarrow m=-\dfrac{1}{48}\\ \text{PT có 2 nghiệm phân biệt }\Leftrightarrow48m+1>0\Leftrightarrow m>-\dfrac{1}{48};m\ne1\)
\(b,\Delta=4\left(m-1\right)^2+4\left(2m+1\right)=4m^2+8>0,\forall m\\ \text{Vậy PT có 2 nghiệm phân biệt với mọi m}\\ 2,\\ \text{PT có 2 nghiệm phân biệt }\)
\(\Leftrightarrow\Delta=4\left(m+1\right)^2-4\left(m^2-1\right)>0\\ \Leftrightarrow4m^2+8m+4-4m^2+4>0\\ \Leftrightarrow8m+8>0\\ \Leftrightarrow m>-1\)
1) Giải pt
a. x + 2 = 0
b. (x - 3) (2x + 8) = 0
2) Tìm đkxđ của pt : \(\dfrac{x}{x-5}\)- \(\dfrac{7}{2}\)= 0
Câu 1:
a: x+2=0
nên x=-2
b: (x-3)(2x+8)=0
=>x-3=0 hoặc 2x+8=0
=>x=3 hoặc x=-4
a .
x + 2 = 0
=> x = 0 - 2 = -2
b ) .
<=> x - 3 = 0 ; 2x + 8 = 0
= > x = 3 ; x = -8/2 = -4
c ) .
ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5
1)
a) \(x+2=0\)
\(\Leftrightarrow x=-2\)
Vậy S = {\(-2\)}
b) \(\left(x-3\right)\left(2x+8\right)=0\)
\(\Leftrightarrow x-3=0\) hoặc \(2x+8=0\)
*) \(x-3=0\)
\(\Leftrightarrow x=3\)
*) \(2x+8=0\)
\(\Leftrightarrow2x=-8\)
\(\Leftrightarrow x=-4\)
Vậy S = \(\left\{-4;3\right\}\)
2) ĐKXĐ:
\(x-5\ne0\Leftrightarrow x\ne5\)
giải pt
căn(9 nhân(x-1)^2) -12 =0
b, căn(4 nhân (3-x))=16
\(\sqrt{9.\left(x-1\right)^2}-12=0\)
=> 3.(x - 1) - 12 = 0
=> 3x - 15 = 0
=> 3x = 15
=> x = 5
b) \(\sqrt{4.\left(3-x\right)}=16\) (ĐKXĐ: x ≤ 3)
\(\Rightarrow\sqrt{3-x}=8\)
=> 3 - x = 64
=> x = -61
cho pt x2 + 2(m - 2)x - m2 = 0 ( m là tham số)
a) Giải pt khi m = 0
b) Trong trường hợp pt có 2 nghiệm phân biệt x1, x2 (x1 < x2) . Tìm m sao cho |x1| - |x2| = 6
a) Khi m = 0 thì phương trình trở thành:
\(x^2+2\left(0-2\right)x-0^2=0\)
\(\Leftrightarrow x^2+2\cdot-2x-0=0\)
\(\Leftrightarrow x^2-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
b) Ta có:
\(\left|x_1\right|-\left|x_2\right|=6\)
\(\Leftrightarrow x^2_1+x_2^2-2\left|x_1x_2\right|=36\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-2\left|x_1x_2\right|=36\)
Mà: \(x_1+x_2=-2\left(m-2\right)=4-2m\)
\(x_1x_2=-m^2\)
\(\Leftrightarrow\left(4-2m\right)^2-2\cdot-m^2-2\cdot m^2=36\)
\(\Leftrightarrow16-16m+4m^2+2m^2-2m^2=36\)
\(\Leftrightarrow\left(4-2m\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}4-2m=6\\4-2m=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2m=-2\\2m=10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=5\end{matrix}\right.\)
Tìm số nguyên x, biết:
a) (x + 12) . (x – 6) > 0
b) (10 - x) . (3 - x) < 0
\(a,\left(x+12\right)\left(x-6\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-12\\x>6\end{matrix}\right.\\\left\{{}\begin{matrix}x< -12\\x< 6\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\)
\(b,\left(10-x\right)\left(3-x\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10-x< 0\\3-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-x>0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>10\\x< 3\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\\ \Rightarrow x\in\left\{...;-15;-14;-13;7;8;9;...\right\}\\ b,\Rightarrow\left(x-10\right)\left(x-3\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10>0\\x-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10< 0\\x-3>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>10;x< 3\left(\text{loại}\right)\\3< x< 10\end{matrix}\right.\\ \Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)
\(a,\left(x+12\right)\left(x+6\right)>0\) \(khi\) \(x>6\Rightarrow x\in\left\{7,8,9,...\right\}\)
\(b,\left(10-x\right)\left(3-x\right)< 0\) \(khi\) \(x< 10\Rightarrow x\in\left\{9,8,7,...\right\}\)
giải bất pt bậc nhất một ẩn
a)2x+7>0
b)-5x+12<+17
c)-3x+5>-5x+2
d)\(\dfrac{x}{2}+3< 7\)
Lời giải:
a. $2x+7>0$
$\Leftrightarrow x> \frac{-7}{2}$
b.
$-5x+12<17$
$\Leftrightarrow -5x< 5$
$\Leftrightarrow 5+5x>0$
$\Leftrightarrow 5x>-5$
$\Leftrightarrow x>-1$
c.
$-3x+5>-5x+2$
$\Leftrightarrow (-3x+5)-(-5x+2)>0$
$\Leftrightarrow 2x+3>0$
$\Leftrightarrow x> \frac{-3}{2}$
d.
$\frac{x}{2}+3< 7$
$\Leftrightarrow \frac{x}{2}< 4$
$\Leftrightarrow x< 8$
cho PT x2 - 2(m+1)x + m2 +3m + 2 = 0
b) tìm m để PT có 2 nghiệm phân biệt sao cho tổng bình phương 2 nghiệm = 12
b: \(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+3m+2\right)\)
\(=4m^2+8m+4-4m^2-12m-8\)
=-4m-4
Để phương trình có hai nghiệm phân biệt thì -4m-4>0
=>-4m>4
hay m<-1
Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=12\)
\(\Leftrightarrow\left(2m+2\right)^2-2\left(m^2+3m+2\right)-12=0\)
\(\Leftrightarrow4m^2+8m+4-2m^2-6m-4-12=0\)
\(\Leftrightarrow2m^2+2m-12=0\)
\(\Leftrightarrow m^2+m-6=0\)
\(\Leftrightarrow\left(m+3\right)\left(m-2\right)=0\)
=>m=-3(nhận) hoặc m=2(loại)
Tìm các số nguyên x biết
a) (x-2)(x+1)=0
b) (x^2+5)(x^2-25) =0
a) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
b) \(\left(x^2+5\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+5=0\\x^2-25=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2=-5\\x^2=25\end{matrix}\right.\) \(\Leftrightarrow x^2=25\) \(\Leftrightarrow x=\pm5\)
a)giải PT x3-6x2-x+30=0
b)tìm giá trị nhỏ nhất của bt x2-12x+33
a: =>x^3+2x^2-8x^2-16x+15x+30=0
=>(x+2)(x^2-8x+15)=0
=>(x+2)(x-3)(x-5)=0
=>\(x\in\left\{-2;3;5\right\}\)
b: =x^2-12x+36-3
=(x-6)^2-3>=-3
Dấu = xảy ra khi x=6