Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kênh youtube: chaau high...
Xem chi tiết
Phạm Tuân
Xem chi tiết
gyurbsrg
Xem chi tiết
Trần Ái Linh
26 tháng 5 2021 lúc 21:18

PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`

Viet: `x_1+x_2=-4`

`x_1 x_2=m+1`

`(x_1)/(x_2)+(x_2)/(x_1)=10/3`

`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`

`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`

`<=> (4^2-2(m+1))/(m+1)=10/3`

`<=> m=2` (TM)

Vậy `m=2`.

Bích Linh
Xem chi tiết
YangSu
1 tháng 4 2023 lúc 13:09

\(x^2+2\left(m+1\right)+4m-4=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)

\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)

\(\Leftrightarrow4m^2+8m+4+4m-4=0\)

\(\Leftrightarrow4m^2+12m=0\)

\(\Leftrightarrow4m\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)

Thạch Hằng
Xem chi tiết
Nguyễn Trọng Chiến
7 tháng 3 2021 lúc 16:38

a Khi m=-2 \(\Rightarrow x^2+\left(-2-2\right)x+-2+5=0\Leftrightarrow x^2-4x+3=0\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\) b Theo hệ thức Vi-et có :

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2-m\\x_1x_2=m+5\end{matrix}\right.\)

Mà \(\left(x_1+x_2\right)^2-2x_1x_2=x_1^2+x_2^2=10\Rightarrow\left(2-m\right)^2-2\left(m+5\right)=10\Leftrightarrow m^2-4m+4-2m-10=10\Leftrightarrow m^2-6m-16=0\Leftrightarrow m^2+2m-8m-16=0\Leftrightarrow\left(m+2\right)\left(m-8\right)=0\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=8\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
7 tháng 3 2021 lúc 19:01

a) Thay m=-2 vào phương trình, ta được:

\(x^2-4x+3=0\)

\(\Leftrightarrow x^2-x-3x+3=0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy: Khi m=-2 thì phương trình có hai nghiệm phân biệt là S={1;3}

Dương Thị Thu Hiền
Xem chi tiết
lạc lạc
12 tháng 11 2021 lúc 6:54

Bước 1: Tìm điều kiện của tham số để phương trình có hai nghiệm phân biệt.

Bước 2: Khi phương trình đã có hai nghiệm phân biệt, ta áp dụng Vi-ét để tìm các giá trị của tham số.

Bước 3. Đối chiếu với điều kiện và kết luận bài toán.

xem tr sách của anh

Nguyễn Hoàng Minh
12 tháng 11 2021 lúc 7:05

Bài 1:

PT có 2 nghiệm \(\Leftrightarrow\Delta=\left(m+2\right)^2-4\cdot2\ge0\Leftrightarrow m^2+4m-8\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-2-2\sqrt{3}\\m\ge-2+2\sqrt{3}\end{matrix}\right.\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2\end{matrix}\right.\)

Ta có \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{9}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=9x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=18\\ \Leftrightarrow2\left(m+2\right)^2-8=18\\ \Leftrightarrow2m^2+8m+8-8=18\\ \Leftrightarrow m^2+4m-9=0\\ \Leftrightarrow\left[{}\begin{matrix}m=-2+\sqrt{13}\\m=-2-\sqrt{13}\end{matrix}\right.\left(tm\right)\)

Cạc NGU
Xem chi tiết

\(x^2-\left(m-1\right)x-2=0\)

a=1; b=-m+1; c=-2

Vì a*c=-2<0

nên phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m-1\right)\right]}{1}=m-1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\end{matrix}\right.\)

\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(m-1\right)^2-4\cdot\left(-2\right)=\left(m-1\right)^2+8\)

=>\(x_1-x_2=\pm\sqrt{\left(m-1\right)^2+8}\)

\(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)

=>\(x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)

=>\(x_1^3-x_2^3=3x_1-3x_2\)

=>\(\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2-3\right)=0\)

=>\(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2-3\right]=0\)

=>\(\left[{}\begin{matrix}x_1-x_2=0\\\left(m-1\right)^2-\left(-2\right)-3=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\sqrt{\left(m-1\right)^2+8}=0\left(vôlý\right)\\\left(m-1\right)^2-1=0\end{matrix}\right.\)

=>\(\left(m-1\right)^2=1\)

=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)

Lê Anh Thư
Xem chi tiết
Lục Ninh
Xem chi tiết
Akai Haruma
3 tháng 4 2022 lúc 12:43

Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m^2+2m)^2-(m^2+7)\geq 0$

$\Leftrightarrow m^4+4m^3+3m^2-7\geq 0(*)$
Áp dụng định lý Viet:

$x_1+x_2=2m(m+2)$

$x_1x_2=m^2+7$

Khi đó:

$x_1x_2-2(x_1+x_2)=4$

$\Leftrightarrow m^2+7-4m(m+2)=4$

$\Leftrightarrow -3m^2-8m+3=0$

$\Leftrightarrow (1-3m)(m+3)=0$

$\Leftrightarrow m=\frac{1}{3}$ hoặc $m=-3$

Thử lại với $(*)$ thấy đều không thỏa mãn

Vậy không tồn tại $m$ thỏa mãn đkđb

Thanh Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 5 2023 lúc 22:30

Vì a*c=-3<0

nên phương trình luôn có 2 nghiệm pb

x1^2+x2^2=10

=>(x1+x2)^2-2x1x2=10

=>(2m+2)^2+6=10

=>(2m+2)^2=4

=>2m+2=2 hoặc 2m+2=-2

=>m=-2 hoặc m=0