Tìm m để pt sau có nghiệm \(x^4+x^3+2\left(m-1\right)x^2+mx+m^2=0\)
1 Cho pt:\(x^2+2mx-3m^2=0\).Tìm m để pt có 2 nghiệm \(x_1< 1< x_2\)
2 Tìm m để pt sau có 2 nghiệm cùng dấu,khi đó 2 nghiệm mang dấu gì?
a)\(x^2-2mx+5m-4=0\)
b)\(mx^2+mx+3=0\)
3 Tìm m để pt \(\left(m+1\right)x^2+mx+3=0\) có 2 nghiệm cùng lớn hơn -1
Giúp em với huhu :<,bài nào cũng đc ạ,em cảm ơn!
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
2.
a. Pt có 2 nghiệm cùng dấu khi:
\(\left\{{}\begin{matrix}\Delta'=m^2-5m+4\ge0\\x_1x_2=5m-4>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge4\\m\le1\end{matrix}\right.\\m>\dfrac{4}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge4\\\dfrac{4}{5}< m\le1\end{matrix}\right.\)
Khi đó \(x_1+x_2=2m>2.\dfrac{4}{5}>0\) nên 2 nghiệm cùng dương
b. Pt có 2 nghiệm cùng dấu khi: \(\left\{{}\begin{matrix}m\ne0\\\Delta=m^2-12m\ge0\\x_1x_2=\dfrac{3}{m}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m\ge12\\m\le0\end{matrix}\right.\\m>0\end{matrix}\right.\) \(\Rightarrow m\ge12\)
Khi đó \(x_1+x_2=-1< 0\) nên 2 nghiệm cùng âm
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)
1)Cho hệ pt : \(\left\{{}\begin{matrix}2x+3y=m\\-5x+y=-1\end{matrix}\right.\)
Tìm m để hệ pt có nghiệm x>0 ,y>0
2) Cho pt\(mx^2-2\left(m-1\right)x+m-1=0\) (m là tham số)
Tìm m để pt có nghiệm kép ,có nghiệm duy nhất
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
Cho pt : \(mx^2-2\left(m-2\right)x+m-3=0\). Tìm m để pt có 2 nghiệm x\(_1\)x\(_2\) sao cho \(x^2_1\)+\(x^2_{_{ }2}\)=1
\(\left\{{}\begin{matrix}x^3=y^2+7x^2-mx\\y^3=x^2+7y^2-my\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x-y=0\\x^2+y^2+xy-6\left(x-y\right)+m=0\end{matrix}\right.\)
tìm m để pt có đúng 1 nghiệm. Từ x-y=0 Em tìm dc 1 nghiệm và m<16 rồi còn pt dưới thì ch bt làm sao ạ mn giúp em với em cảm ơn nhiêuuuuuu
Trừ vế cho vế:
\(\Rightarrow x^3-y^3=6\left(x^2-y^2\right)-m\left(x-y\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-6\left(x+y\right)+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=y\\x^2+xy+y^2-6\left(x+y\right)+m=0\end{matrix}\right.\)
- Với \(x=y\Rightarrow x^3=8x^2-mx\Leftrightarrow x\left(x^2-8x+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-8x+m=0\end{matrix}\right.\)
Do đó hệ luôn luôn có nghiệm \(\left(x;y\right)=\left(0;0\right)\) với mọi m
Để hệ chỉ có 1 nghiệm thì \(x^2-8x+m=0\) vô nghiệm \(\Rightarrow m>16\)
Khi đó, xét pt \(x^2+xy+y^2-6\left(x+y\right)+m=0\) (1)
Ta có:
\(x^2+xy+y^2-6\left(x+y\right)+m>\dfrac{3}{4}\left(x+y\right)^2-6\left(x+y\right)+16=\dfrac{3}{4}\left(x+y-4\right)^2+4>0\)
\(\Rightarrow\) (1) vô nghiệm hay hệ có đúng 1 nghiệm \(\left(x;y\right)=\left(0;0\right)\)
Vậy \(m>16\) thì hệ có 1 nghiệm
1,Tìm m để pt có \(\sqrt{2x^2+mx}=3-x\)
a, 1 nghiệm
b, 2 nghiệm phân biệt
2,Tìm m để pt có 2 nghiệm phân biệt \(\sqrt{x+2}+\sqrt{6-x}-\sqrt{\left(x+2\right)\left(6-x\right)}=m\)
Cho pt: \(mx^2-\left(2m+1\right)x+m+3=0\)
a) tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b) giả sử \(x_1;x_2\) là 2 nghiệm của pt trên. tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)
\(=4m^2+4m+1-4m^2-12m\)
\(=-8m+1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-8m+1>0\)
\(\Leftrightarrow-8m>-1\)
hay \(m< \dfrac{1}{8}\)
1 . Cho pt :\(x^2-mx+m-1=0\) . Tìm m để pt có 2 nghiệm \(x_1,x_2\) và biểu thức \(A=\dfrac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}\) đạt GTLN
2.Giả sử m là giá trị để phương trình \(x^2-mx+m-2=0\) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^{^2}-2}{x_1-1}.\dfrac{x^2_2-2}{x_2-1}=4\) . Tìm các giá trị của m
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
Bài 4:Tìm m để pt sau có nghiệm kép:
a)\(x^2-\left(3-2m\right)x+m^2=0\)
b)\(x^2+\left(2m+1\right)x+m^2=0\)
a, x2 - (3 - 2m)x + m2 = 0
\(\Delta\) = [-(3 - 2m)]2 - 4.1.m2 = 9 - 12m + 4m2 - 4m2 = 9 - 12m
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 9 - 12m = 0 \(\Leftrightarrow\) m = \(\dfrac{3}{4}\)
Vậy ...
b, x2 + (2m + 1)x + m2 = 0
\(\Delta\) = (2m + 1)2 - 4.1.m2 = 4m2 + 4m + 1 - 4m2 = 4m + 1
Để pt trên có nghiệm kép thì \(\Delta\) = 0 \(\Leftrightarrow\) 4m + 1 = 0 \(\Leftrightarrow\) m = \(\dfrac{-1}{4}\)
Vậy ...
Chúc bn học tốt!