Phân tích đa thức sau thành nhân tử
A=(a+1)(a+3)(a+5)(a+7)+15
Bài 1: Phân tích đa thức thành nhân tử
a) (6x+3)-(2x-5)(2x+1)
b) (3x-2)(4x-3)-(2-3x)(x-1)-2(3x-2)(x+1)
Bài 2*:Phân tích đa thức thành nhân tử
a) (a-b)(a+2b)-(b-a)(2a-b)-(a-b)(a+3b)
b) 5xy3-2xy2-15y2+6z
c) (x+y)(2x-y)+(2x-y)(3x-y)-(y-2x)
d) ab3c2-a2b2c2+ab2c3-a2bc
e) x2(y-z)+y2(z-x)+z2(x-y)
f) x2-6xy+9y2+4x-12y
Bài 1:
a: Ta có: \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(2x+1\right)\left(3-2x+5\right)\)
\(=\left(2x+1\right)\left(8-2x\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
b) Ta có: \(\left(3x-2\right)\left(4x-3\right)-\left(2-3x\right)\left(x-1\right)-2\left(3x-2\right)\left(x+1\right)\)
\(=\left(3x-2\right)\left(4x-3\right)+\left(3x-2\right)\left(x-1\right)-\left(3x-2\right)\left(2x+2\right)\)
\(=\left(3x-2\right)\left(4x-3+x-1-2x-2\right)\)
\(=\left(3x-2\right)\left(3x-6\right)\)
\(=3\left(3x-2\right)\left(x-2\right)\)
Bài 2:
a: Ta có: \(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-4b\right)\)
\(=2\left(a-b\right)\left(a-2b\right)\)
f: Ta có: \(x^2-6xy+9y^2+4x-12y\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x-3y+4\right)\)
Phân tích đa thức sau thành nhân tử:(a+1)(a+3)(a+5)(a+7)+15
Đặt \(M=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(M=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(M=\left(a^2+7a+a+7\right)\left(a^2+5a+3a+15\right)+15\)
\(M=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(p=a^2+8a+11\)
\(\Rightarrow M=\left(p-4\right)\left(p+4\right)+15\)
\(\Rightarrow M=p^2-16+15\)
\(\Rightarrow M=p^2-1\)
\(\Rightarrow M=\left(p-1\right)\left(p+1\right)\)
Thay \(p=a^2+8a+11\)vào M, ta có :
\(M=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)\)
\(M=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
Phân tích đa thức sau thành nhân tử :A = (a + 1) ( a + 3) (a + 5) ( a + 7) + 15
A=( a +1)(a+3)(a+5)(a+7)+15
=(a+1)(a+7)(a+3)(a+5)+15
=(a2+8a+7)(a2+8a+15)+15
Đặt y=a2+8a+7 ta được :
y(y+8)+15=y2 + 8y +15
=y2 +3y+5y+15
=y(y+3) +5(y+3)
=(y+3)(y+5)
thay y=a2+8a+7 ta được
(a2+8a+7+3)(a2+8a+7+5)
=(a2+8a+10)(a2-2a-6a+12)
=(a2+8a+10)[a(a-2)-6(a-2)]
=(a2+8a+10)(a-2)(a-6)
Bài 5: Phân tích đa thức sau thành nhân tử
a) x (a - b) + 2a - 2b
b) ax + by + 5x + 5y
\(a,x\left(a-b\right)+2a-2b=x\left(a-b\right)+2\left(a-b\right)=\left(a-b\right)\left(x+2\right)\\ b,Sửa:ax+ay+5x+5y=a\left(x+y\right)+5\left(x+y\right)=\left(a+5\right)\left(x+y\right)\)
\(a,=\left(x+2\right)\left(a-b\right)\\ b,Sửa:ax+ay+5x+5y\\ =a\left(x+y\right)+5\left(x+y\right)\\ =\left(a+5\right)\left(x+y\right)\)
a) \(x\left(a-b\right)+2a-2b\)
\(=x\left(a-b\right)+\left(2a-2b\right)\)
\(=x\left(a-b\right)+2\left(a-b\right)\)
\(=\left(a-b\right)\left(x+2\right)\)
Bài 5. Phân tích các đa thức thành nhân tử
a) (x2-4x)2-8(x2-4x)+15 b) (x2+2x)2+9x2+18x+20
c) ( x+1)(x+2)(x+3)(x+4)-24 d) (x-y+5)2-2(x-y+5)+1
Bài 6. Phân tích các đa thức thành nhân tử
a) x2y+x2-y-1 b) (x2+x)2+4(x2+x)-12
c) (6x+5)2(3x+2)(x+1)-6
Phân tích đa thức thành nhân tử
a) 4x⁴+4x³-x²-x
b) 1-2a+2bc+a²-b²-c²
c) (x-7)(x-5)(x-4)(x-2)-72
\(a,=4x^3\left(x+1\right)-x\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\\ =x\left(2x-1\right)\left(2x+1\right)\left(x+1\right)\\ b,=\left(a-1\right)^2-\left(b-c\right)^2\\ =\left(a-1-b+c\right)\left(a-1+b-c\right)\\ c,=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\\ =\left(x^2-9x+17\right)^2-9-72\\ =\left(x^2-9x+17\right)^2-81=\left(x^2-9x+8\right)\left(x^2-9x+26\right)\\ =\left(x-1\right)\left(x-8\right)\left(x^2-9x+26\right)\)
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) a2 - 10a + 25 - 4b2
b) a( x2 + 1 ) - x( a2 + 1 )
\(a,=\left(a-5\right)^2-4b^2=\left(a-2b-5\right)\left(a+2b-5\right)\\ b,=ax^2+a-a^2x-x=ax\left(a-x\right)+\left(a-x\right)=\left(ax+1\right)\left(a-x\right)\)
a: \(=\left(a-5-2b\right)\left(a-5+2b\right)\)
b: \(ax^2+a-a^2x-x\)
\(=ax\left(x-a\right)-\left(x-a\right)\)
\(=\left(x-a\right)\left(ax-1\right)\)
Phân tích đa thức thành nhân tử
a^3+a-30
x^3+x^2+100
\(a^3+a+30\)
\(=a^3+3a^2-3a^2-9a+10a+30\)
\(=\left(a+3\right)\left(a^2-3a+10\right)\)
\(x^3+x^2+100\)
\(=x^3+5x^2-4x^2-20x+20x+100\)
\(=\left(x+5\right)\left(x^2-4x+20\right)\)
`a^3 + a - 30`
`= a^3 + 3a^2 - 3a^2 - 9a + 10a + 30`
`= (a + 3)(a^2 - 3a + 10)`
`--------------------`
`x^3 + x^2 + 100`
`= x^3 + 5x^2 - 4x^2 - 20x + 20x +100`
`= (x+5)(x^3 - 4x + 20)`
Phân tích đa thức thành nhân tử: A=(a+1)(a+3)(a+5)(a+7)+15
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left[\left(a+1\right)\left(a+7\right)\right]\left[\left(a+3\right)\left(a+5\right)\right]+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt: \(a^2+8a+11=t\), khi đó pt trở thành:
\(\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)
\(=\left(a^2+8a+11-1\right)\left(a^2+8a+11+1\right)=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\\ =\left(a+2\right)\left(a+6\right)\left(a^2+8a+10\right)\)
\(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(t=a^2+8a+7\) khi đó A thành:
\(t\left(t+8\right)+15=t^2+8t+15\)
\(=\left(t+3\right)\left(t+5\right)=\left(a^2+8a+7+3\right)\left(a^2+8a+7+5\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+10\right)\left(a+2\right)\left(a+6\right)\)
Ta có:
\(\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+15\)
\(\left[\left(a+1\right)\left(a+7\right)\left(a+3\right)\left(a+5\right)\right]+15\)
\(\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\)
Đặt \(a^2+8a+7=t\)
\(\Rightarrow t\left(t+8\right)+15\)
\(=t^2+8t+15\)
\(=t\left(t+3\right)+5\left(t+3\right)\)
\(=\left(t+3\right)\left(t+5\right)\)
\(\Rightarrow\left[\left(a^2+8a+7\right)+3\right]\left[\left(a^2+8a+7\right)+5\right]\)
\(=\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
\(=\left(a^2+8a+10\right)\left(a^2+2a+6a+12\right)\)
\(=\left(a^2+8a+10\right)\left[a\left(a+2\right)+6\left(a+2\right)\right]\)
\(=\left(a^2+8a+10\right)\left(a+2\right)\left(a+6\right)\)