Cho a, b, c > 0. Chứng minh \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)
Cho a, b, c > 0. Chứng minh \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{3}{4}\)
Ta có:
\(\frac{a}{2a+b+c}=\frac{a}{\left(a+b\right)\left(a+c\right)}\le\frac{a}{4}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
\(\frac{b}{a+2b+c}=\frac{b}{\left(a+b\right)\left(b+c\right)}\le\frac{b}{4}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\)
\(\frac{c}{a+b+2c}=\frac{c}{\left(a+c\right)\left(b+c\right)}\le\frac{c}{4}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
Cộng vế theo vế:
=> \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\le\frac{1}{4}\left(1+1+1\right)=\frac{3}{4}\)
Dấu "=" xảy ra <=> a = b = c
Cách 1:
Biến đổi tương đương bất đẳng thức cần chứng minh
\(1-\frac{a}{2b+b+c}+1-\frac{b}{a+2b+c}+1-\frac{c}{a+b+2c}\ge\frac{9}{4}\)
\(\Leftrightarrow\frac{a+b+c}{2a+b+c}+\frac{a+b+c}{a+2b+c}+\frac{a+b+c}{a+b+2c}\ge\frac{9}{4}\)
\(\Leftrightarrow4\left(a+b+c\right)\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\ge9\)
Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c => x+y+z=4(a+b+c)
Khi đó đẳng thức trên trở thành
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2xz}\ge0\)
BĐT cuối luôn đúng
Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c
Cách 2:
Đặt x=2a+b+c; y=a+2b+c; z=a+b+2c
=> \(\hept{\begin{cases}a=\frac{2x-y-z}{4}\\b=\frac{3y-x-z}{4}\\c=\frac{3z-x-y}{4}\end{cases}}\)
BĐT cần chứng minh được viết lại thành
\(\frac{3x-y-z}{4x}+\frac{3y-x-z}{4y}+\frac{3z-x-z}{4z}\le\frac{3}{4}\)
\(\Leftrightarrow\frac{1}{4}\left(\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\right)\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{z}{x}+\frac{z}{x}\ge6\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-2\right)+\left(\frac{y}{z}+\frac{z}{y}-2\right)+\left(\frac{x}{z}+\frac{z}{x}-2\right)\ge0\)
\(\Leftrightarrow\frac{\left(x-y\right)^2}{2xy}+\frac{\left(y-z\right)^2}{2yz}+\frac{\left(z-x\right)^2}{2zx}\ge0\)
BĐT cuối luôn đúng
Vậy BĐT được chứng minh. Dấu "=" <=> a=b=c
Một cách khác. Áp dụng BĐT Neibizt
Đặt x=b+c; y=a+c; z=a+b
=> \(\hept{\begin{cases}a=\frac{y+z-x}{2}\\b=\frac{x+z-y}{2}\\c=\frac{x+y-z}{2}\end{cases}}\)
BĐT cần chứng minh viết lại thành
\(\frac{y+z-x}{2\left(y+z\right)}+\frac{z+x-y}{2\left(z+x\right)}+\frac{x+y-z}{2\left(x+y\right)}\le\frac{3}{4}\)
<=> \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge\frac{3}{2}\)
BĐT cuối cùng là BĐT Neibizt
Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c
Cho \(a,b,c>0\). Chứng minh
\(\frac{3}{5}\le\frac{a}{a+2b+2b}+\frac{b}{2a+b+2c}+\frac{c}{2a+2b+c}< 1\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}+\frac{2a}{b+2a}+\frac{2b}{c+2b}+\frac{2c}{a+2c}\)≥3
Cho a, b, c > 0. Chứng minh rằng :
\(a+b+c\le\frac{a^2+b^2}{2c}+\frac{b^2+c^2}{2a}+\frac{c^2+a^2}{2b}\le\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\)
Cho a;b;c > 0.Chứng minh \(\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\le\frac{3}{2}\)
Theo e nghĩ là đề phải như này cơ ạ :
\(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\le\frac{3}{2}\)
Biến đổi và sử dụng Cô - si là sẽ ra :
Ta có : \(\frac{a}{\sqrt{b+c+2a}}+\frac{b}{\sqrt{c+a+2b}}+\frac{c}{\sqrt{a+b+2c}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)+\left(a+c\right)}}+\frac{b}{\sqrt{\left(c+b\right)+\left(a+b\right)}}+\frac{c}{\sqrt{\left(a+c\right)+\left(b+c\right)}}\)
\(=\sqrt{\frac{a.a}{\left(a+b\right)+\left(a+c\right)}}+\sqrt{\frac{b.b}{\left(b+a\right)+\left(b+c\right)}}+\sqrt{\frac{c.c}{\left(c+a\right)+\left(c+b\right)}}\)
\(\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+a}+\frac{b}{b+c}+\frac{c}{c+a}+\frac{c}{c+b}\right)=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)
Đề không sai đâu:P
\(VT=\Sigma_{cyc}2\sqrt{\frac{1}{4}.\frac{a}{b+c+2a}}\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{\left(a+b\right)+\left(a+c\right)}\right]\)
\(\le\Sigma_{cyc}\left[\frac{1}{4}+\frac{a}{4\left(a+b\right)}+\frac{a}{4\left(a+c\right)}\right]=\frac{3}{2}\)
Cho \(0< a\le b\le c\). Chứng minh:
\(\frac{2a^2}{b+c}+\frac{2b^2}{c+a}+\frac{2c^2}{a+b}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
Làm đại nha!
Chuyển vế qua ta có bđt tương đương
\(\left(\frac{a^2}{b}-\frac{2a^2}{b+c}\right)+\left(\frac{b^2}{c}-\frac{2b^2}{c+a}\right)+\left(\frac{c^2}{a}-\frac{2c^2}{a+b}\right)\ge0\)
\(\Leftrightarrow\frac{a^2\left(c-b\right)}{b\left(b+c\right)}+\frac{b^2\left(a-c\right)}{c\left(c+a\right)}+\frac{c^2\left(b-a\right)}{a\left(a+b\right)}\ge0\)(1)
Nhiệm vụ là đi CM Bđt trên
Biến (1) thành dạng: \(S_1\left(c-b\right)^2+S_2\left(a-c\right)^2+S_3\left(b-a\right)^2\ge0\)(2)
trong đó: \(\hept{\begin{cases}S_1=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}\\S_2=\frac{b^2}{c\left(c+a\right)\left(a-c\right)}\\S_3=\frac{c^2}{a\left(a+b\right)\left(b-a\right)}\end{cases}}\)
\(\left(2\right)\Leftrightarrow S_1\left(c-b\right)^2-S_2\left[\left(c-b\right)+\left(b-a\right)\right]^2+S_3\left(b-a\right)^2\ge0\)
\(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2-2\left(c-b\right)\left(b-a\right)S_2\ge0\)
hay \(\Leftrightarrow\left(S_1-S_2\right)\left(c-b\right)^2+\left(S_3-S_2\right)\left(b-a\right)^2+2\left(c-b\right)\left(b-a\right)\left(-S_2\right)\ge0\)(3)
Tới đây cần chứng minh (3) đúng
Xét: \(S_1-S_2=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}-\frac{b^2}{c\left(c+a\right)\left(a-c\right)}=\frac{a^2}{b\left(b+c\right)\left(c-b\right)}+\frac{b^2}{c\left(c+a\right)\left(c-a\right)}>0\)(do từ gt)
Xét \(S_3-S_2=.....>0\)(tương tự làm nha)
Xét \(-S_2=\frac{b^2}{c\left(a+c\right)\left(c-a\right)}>0\)
Có: \(\hept{\begin{cases}S_1-S_2>0\\S_3-S_2>0\\-S_2>0\end{cases}}\)Suy ra (3) đúng
Suy ra (2) và (1) cũng đúng
Vậy .........
Không biết đúng không
bạn làm nhầm rồi
Đoạn \(\left(2\right)\Leftrightarrow....+S_2\)bạn ghi thành \(\Leftrightarrow...-S_2\)
Ta có \(\frac{2a^2}{b+c}\le\frac{1}{2}a^2\left(\frac{1}{b}+\frac{1}{c}\right)\)(do \(\frac{1}{b+c}\le\frac{1}{4}\left(\frac{1}{b}+\frac{1}{c}\right)\)
Khi đó Bất đẳng thức
<=>\(\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)
<=> \(a^3c+b^3a+c^3b\ge a^3b+b^3c+c^3a\)
<=> \(\left(a^3c-ac^3\right)+\left(b^3a-b^3c\right)+\left(c^3b-a^3b\right)\ge0\)
<=> \(\left(a-c\right)\left[ac\left(a+c\right)+b^3-b\left(a^2+ac+c^2\right)\right]\ge0\)
<=> \(\left(a-c\right)\left[\left(a^2c-ba^2\right)+\left(ac^2-abc\right)+\left(b^3-bc^2\right)\right]\ge0\)
<=> \(\left(a-c\right)\left(c-b\right)\left[a^2+ac-b\left(b+c\right)\right]\ge0\)
<=> \(\left(a-c\right)\left(c-b\right)\left(a-b\right)\left(a+b+c\right)\ge0\)luôn đúng với giả thiết
cho a, b, c > 0. chứng minh \(\frac{a}{2a+b+c}+\frac{b}{a+2b+c}+\frac{c}{a+b+2c}\) \(\le\frac{3}{4}\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
cho a=<b=<c=<0. chứng minh rằng \(\frac{2a^2}{b+c}+\frac{2b^2}{c+a}+\frac{2c^2}{a+b}\le\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\)