B=x^3y^3- x^3y^2+3x^2y^3-y^3x^3 tại x=y=1
BÀI 9: TÍNH GIÁ TRỊ BIỂU THỨC
a) 2/3x^2y + 3x^2y + x^2y tại x=3 y=7
b) 1/2xy^2 + 1/3xy^2 + 1/6xy^2 tại x=3/4 y= -1/2
c) 2x^3y^3 + 10x^3y^3 - 20x^3y^3 tại x =1 y= -1
d) 2018xy^2 + 16xy^2 - 2016xy^2 tại x= -2 y= -1/3
a: A=2/3x^2y+4x^2y=14/3x^2y
=14/3*9*7=294
b: B=xy^2(1/2+1/3+1/6)=xy^2=3/4*1/4=3/16
c: C=x^3y^3(2+10-20)=-8x^3y^3
=-8*1^3(-1)^3=8
d: D=xy^2(2018+16-2016)
=18xy^2
=18(-2)*1/9=-4
Làm tính chia
a, ( x + y )^2 : (x+y)
b, ( x- y )^5 : ( y - x )^4
c, (5x^4 - 3x^3 + x^2 ) : 3x^2
d, ( x^3y^3 - 1/2x^2y^3 x^3y^2 ) : 1/2x^2y^2
a)\(\left(x+y\right)^2:\left(x+y\right)=x+y\)
b)\(\left(x-y\right)^5:\left(y-x\right)^4=\left(x-y\right)^5:\left(x-y\right)^4=x-y\)
c)\(\left(5x^4-3x^3+x^2\right):3x^2=\frac{5}{3}x^2-x+\frac{1}{3}^{ }\)
d)\(\left(x^3y^3-\frac{1}{2}x^2y^3+x^3y^2\right):\frac{1}{2}x^2y^2=2xy-y+x\)
Tính giá trị biểu thức :
a, A=3x^3y +6x^2y^2 + 3xy^3 tại x = 1/2; y = -1/3
b, B= x^2y^2 + xy + x^3 + y^3 tại x = -1; y = 3
a: \(A=3\cdot\dfrac{1}{8}\cdot\dfrac{-1}{3}+6\cdot\dfrac{1}{4}\cdot\dfrac{1}{9}+3\cdot\dfrac{1}{2}\cdot\dfrac{-1}{27}\)
\(=-\dfrac{1}{8}+\dfrac{1}{6}+\dfrac{-1}{18}\)
\(=\dfrac{-1}{72}\)
b: \(B=\left(-1\right)^2\cdot3^2+\left(-1\right)\cdot3+\left(-1\right)^3+3^3\)
\(=9-3-1+27=36-4=32\)
A = (3x + y)^2 - 3y . ( 2x - 1/3y )
B = ( x - 2 )^2 + ( x + 2 )^2 - 2. ( x - 2 ) ( x + 2)
C = ( x - y ) ( x^2 + xy + y^2 ) + 2y^3
D = ( x -5 ) ( x+ 5 ) -(x - 8 ) (x + 4)
E = (3x + 1 )^2 - 2 . ( 9x^2 - 1 ) + ( 3x - 1 ) ^2
F = ( x - 3 ) ( x + 3 ) - ( x - 3 )^2
f: \(=x^2-9-x^2+6x-9=6x-18\)
tính giá trị biểu thức biết
\(\text{B=x^2-5-2xy+5y+y^2+2019 tại x=y+7}\)
\(\text{C=x^3-3x^2+3x^2y+3xy^2+y^3-3y^2-6xy+3x+3y+2019 tại x=101-y}\)
1)x2-6x+5
2)a: 3x(2x3-3x2+5x-1)
b: (x+3)(x-2)
C: x+3/x-1+2x+5/x-1+14-3x/1-x
d: 3x/2y-2x+3y/x+y+3y(3y-x)/2(x2-y2)
a, \(x^2\) + 6x + 5 = 0
=>\(x^2\) + x + 5x +5 = 0
=>x(x + 1) + 5(x + 1) = 0
=>(x + 1)(x + 5) = 0
=> x + 1 =0 hoặc x + 5 =0
=> x = -1 hoặc x = -5
c) \(\dfrac{x+3}{x-1}+\dfrac{2x+5}{x-1}+\dfrac{14-3x}{1-x}\)
\(=\dfrac{x+3}{x-1}+\dfrac{2x+5}{x-1}-\dfrac{14-3x}{x-1}\)
\(=\dfrac{x+3+2x+5-14+3x}{x-1}\)
\(=\dfrac{6x-6}{x-1}\)
\(=\dfrac{6\left(x-1\right)}{x-1}\)
\(=6.\)
d) \(\dfrac{3x}{2y-2x}+\dfrac{3y}{x+y}+\dfrac{3y\left(3y-x\right)}{2\left(x^2-y^2\right)}\)
\(=-\dfrac{3x}{2\left(x-y\right)}+\dfrac{3y}{x+y}+\dfrac{3y\left(3y-x\right)}{2\left(x-y\right)\left(x+y\right)}\)
\(=-\dfrac{3x\left(x+y\right)+6y\left(x-y\right)+3y\left(3y-x\right)}{2\left(x-y\right)\left(x+y\right)}\)
\(=-\dfrac{3x^2+3xy+6xy-6y^2+9y^2-3xy}{2\left(x-y\right)\left(x+y\right)}\)
\(=-\dfrac{3x^2+6xy+3y^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=-\dfrac{3\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)}\)
\(=-\dfrac{3\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}\)
\(=-\dfrac{3\left(x+y\right)}{2\left(x-y\right)}\).
cho x, y >0 . cmr (2x^2+3y^2)/(2x^3+3y^3)+(2y^2+3x^2)/(2y^3+3x^3)<=4/x+y
Bài 9:Rút gọn rồi tính giá trị
a) x(x-y)+y(x-y) tại x=-1; y=-3
b)x3(3x-2y+y2)+3y(x2+4x+5)-12(xy+1) tại x=1;y=-2
c)x3(2x+3y)-4y(x3+3x)+12xy x=-1; y=2
d)2x2(y+2)-5x(y2+2)+3xy(y-x) tại x=3; y=-2
Lời giải:
a. $=(x-y)(x+y)=[(-1)-(-3)][(-1)+(-3)]=2(-4)=-8$
b. $=3x^4-2xy^3+x^3y^2+3x^2y+12xy+15y-12xy-12$
$=3x^4-2xy^3+x^3y^2+3x^2y+15y-12$
=3-2.1(-2)^3+1^3.(-2)^2+3.1^2(-2)+15(-2)-12$
$=-25$
c.
$=2x^4+3x^3y-4x^3y-12xy+12xy=2x^4-x^3y$
$=x^3(2x-y)=(-1)^3[2(-1)-2]=-1.(-4)=4$
d.
$=2x^2y+4x^2-5xy^2-10x+3xy^2-3x^2y$
$=(2x^2y-3x^2y)+4x^2+(-5xy^2+3xy^2)-10x$
$=-x^2y+4x^2-2xy^2-10x$
$=-3^2.(-2)+4.3^2-2.3(-2)^2-10.3=0$
Bài 1:Tìm x,y biết
a. 3x = 2y và 2x + y = 3
b. x/3 = 3y/4 và 3x - y = 4
c.4x = 5y và x + 2y = 3
d.3x =2y và 3x- y =1
e.2x=1y và 4x+y=6
f.x/3=3y/2 và x+6y=5
g.2x/5=y/6 và 5x+y=3
\(\hept{\begin{cases}3x=2y\\2x+y=3\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{3}{2}.x\\2x+\frac{3}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{3}{2}.x\\\frac{7}{2}.x=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{6}{7}\\y=\frac{9}{7}\end{cases}}}\)
\(\hept{\begin{cases}\frac{x}{3}=\frac{3y}{4}\\3x-y=4\end{cases}\Leftrightarrow\hept{\begin{cases}4x=9y\\3x-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9y}{4}\\\frac{3.9}{4}y-y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\\frac{23}{4}.y=4\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{9}{4}.y\\y=\frac{16}{23}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{36}{23}\\y=\frac{16}{23}\end{cases}}}\)
Các phần sau làm tương tự nhé