Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
DreamWasTaken
Xem chi tiết
Cao Mai Chi
Xem chi tiết
Hoàng Ninh
Xem chi tiết
Nguyễn Mai Hương
1 tháng 5 2020 lúc 20:32

Ta có AD//BE (gt) (1)

Mặt khác

Trên tia đối của tia KD lấy điểm I sao cho KI = KD

Xét tam giác KIE và tam giác KDC có

KI = KD (gt)

KE = KC (gt)

góc (IKE) = góc(DKC) (đối đỉnh)

=> tam giác KIE = tam giác KDC (c-g-c) (*)

=> góc (KIE) = góc (KDC) (2 góc tương ứng)

=> CD//IE hay BC//IE 

=> góc (BDC) = góc (IED) (2 góc sole trong) (2) 

và IE = CD (2 cạnh tương ứng) (3)

mà DC = DB (4)

Từ (3) và (4) suy ra IE = BD (5)

DE (cạnh chung) (6)

Từ (2), (5) và (6)

=> tam giác BED = tam giác IED (c-g-c)

=> góc IDE = góc BED (2 góc tương ứng)

=> ID//BD hay DK//BE (7)

Từ (1) và (7) suy ra A, D, K thẳng hàng

Khách vãng lai đã xóa
Nguyễn Anh Tú
Xem chi tiết
Đặng Xuân Hiếu
4 tháng 4 2015 lúc 21:50

Hình vẽ

A B C D K E I

 

 

Ta có AD//BE (gt) (1)

Mặt khác

Trên tia đối của tia KD lấy điểm I sao cho KI = KD

Xét tam giác KIE và tam giác KDC có

KI = KD (gt)

KE = KC (gt)

góc (IKE) = góc(DKC) (đối đỉnh)

=> tam giác KIE = tam giác KDC (c-g-c) (*)

=> góc (KIE) = góc (KDC) (2 góc tương ứng)

=> CD//IE hay BC//IE 

=> góc (BDC) = góc (IED) (2 góc sole trong) (2) 

và IE = CD (2 cạnh tương ứng) (3)

mà DC = DB (4)

Từ (3) và (4) suy ra IE = BD (5)

DE (cạnh chung) (6)

Từ (2), (5) và (6)

=> tam giác BED = tam giác IED (c-g-c)

=> góc IDE = góc BED (2 góc tương ứng)

=> ID//BD hay DK//BE (7)

Từ (1) và (7) suy ra A, D, K thẳng hàng

 

Becca
Xem chi tiết
Lê Chấn Long
Xem chi tiết
Phạm Hoàng Khánh Linh
10 tháng 4 2021 lúc 10:17

Ta có AD//BE (gt) (1)

Mặt khác

Trên tia đối của tia KD lấy điểm I sao cho KI = KD

Xét tam giác KIE và tam giác KDC có

KI = KD (gt)

KE = KC (gt)

góc (IKE) = góc(DKC) (đối đỉnh)

=> tam giác KIE = tam giác KDC (c-g-c) (*)

=> góc (KIE) = góc (KDC) (2 góc tương ứng)

=> CD//IE hay BC//IE 

=> góc (BDC) = góc (IED) (2 góc sole trong) (2) 

và IE = CD (2 cạnh tương ứng) (3)

mà DC = DB (4)

Từ (3) và (4) suy ra IE = BD (5)

DE (cạnh chung) (6)

Từ (2), (5) và (6)

=> tam giác BED = tam giác IED (c-g-c)

=> góc IDE = góc BED (2 góc tương ứng)

=> ID//BD hay DK//BE (7)

Từ (1) và (7) suy ra A, D, K thẳng hàng

Khách vãng lai đã xóa
Phạm Hoàng Khánh Linh
10 tháng 4 2021 lúc 10:30

tk cho mk nhé

Khách vãng lai đã xóa
Phạm Hoàng Khánh Linh
10 tháng 4 2021 lúc 10:35

thanks bạn

Khách vãng lai đã xóa
Nguyễn Hoàng Châu
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 7 2023 lúc 22:51

a: Xét tứ giác BFGE có

BF//GE

BE//FG

=>BFGE là hbh

=>GE=BF

=>GE=AF

mà GE//AF

nên AGEF là hình bình hành

b: Xét ΔCAB cso CD/CB=CE/CA

nên DE//AB

=>D,E,G thẳng hàng 

DE//AB

=>DE/AB=CD/CB=1/2

=>DE=AF=GE

=>E là trung điểm của DG

Xét tứ giác ADCG có

E là trung điểm chung của AC và DG

=>ADCG là hbh

=>CG=AD

kim quỳnh hương
Xem chi tiết
Nguyễn Thành Trương
16 tháng 2 2019 lúc 17:37

Ta có AD//BE (gt) (1)

Mặt khác

Trên tia đối của tia KD lấy điểm I sao cho KI = KD

Xét tam giác KIE và tam giác KDC có

KI = KD (gt)

KE = KC (gt)

góc (IKE) = góc(DKC) (đối đỉnh)

=> tam giác KIE = tam giác KDC (c-g-c) (*)

=> góc (KIE) = góc (KDC) (2 góc tương ứng)

=> CD//IE hay BC//IE

=> góc (BDC) = góc (IED) (2 góc sole trong) (2)

và IE = CD (2 cạnh tương ứng) (3)

mà DC = DB (4)

Từ (3) và (4) suy ra IE = BD (5)

DE (cạnh chung) (6)

Từ (2), (5) và (6)

=> tam giác BED = tam giác IED (c-g-c)

=> góc IDE = góc BED (2 góc tương ứng)

=> ID//BD hay DK//BE (7)

Từ (1) và (7) suy ra A, D, K thẳng hàng

Ngô Đứcs Minh
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 20:55

Bài 1:

Không mất tổng quát giả sử $AB< AC$

Gọi $AH$ là phân giác $\widehat{BAC}$. Theo tính chất tia phân giác:

$\frac{BH}{CH}=\frac{AB}{AC}\Rightarrow \frac{BC}{CH}=\frac{AB+AC}{AC}$

Ta có:

$\frac{HN}{HC}=\frac{BN-BH}{HC}=\frac{BN}{HC}-\frac{BH}{HC}=\frac{BC}{2HC}-\frac{BH}{HC}=\frac{AB+AC}{2AC}-\frac{AB}{AC}$

$=\frac{AC-AB}{2AC}=\frac{AC-CD}{2AC}=\frac{AD}{2AC}=\frac{AM}{AC}$

Theo định lý Talet đảo suy ra $MN\parallel AH$

Ta có đpcm.

 

Akai Haruma
30 tháng 1 2021 lúc 20:59

Hình vẽ 1:

undefined

Akai Haruma
30 tháng 1 2021 lúc 21:36

2. 

Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,E$ thẳng hàng ta có:

$\frac{AE}{EC}.\frac{IM}{AI}.\frac{BC}{BM}=1$

$\Leftrightarrow \frac{AE}{EC}=\frac{AI}{2IM}$

$\Rightarrow \frac{AE}{AC}=\frac{AI}{AI+2IM}$

$\Rightarrow \frac{AC}{AE}=\frac{AI+2IM}{AI}(1)$Lại áp dụng tính chất tia phân giác và định lý Talet:

$\frac{AC}{AB}=\frac{CD}{BD}=\frac{CM+DM}{BD}=\frac{BM+DM}{BD}$

$=\frac{BM}{BD}+\frac{DM}{BD}=\frac{AM}{AI}+\frac{IM}{AI}=\frac{AM+IM}{AI}=\frac{AI+2IM}{AI}(2)$

Từ $(1);(2)\Rightarrow \frac{AC}{AB}=\frac{AC}{AE}$

$\Rightarrow AB=AE$ (đpcm)