Bài 1: Định lý Talet trong tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngô Đứcs Minh

1.Cho tam giác ABC, D là điểm trên AC sao cho AB=CD. Gọi M,N lần lượt là trung điểm của AD, BC. Chúng minh rằng MN song song với phân giác của góc BAC.

2. Cho tam giác ABC, đường phân giác AD, trung tuyến AM. Đường thẳng đi qua D, song song với AB, cắt AM tại I. BI cắt AC tại E. Chứng minh AB=AE.

Akai Haruma
30 tháng 1 2021 lúc 20:55

Bài 1:

Không mất tổng quát giả sử $AB< AC$

Gọi $AH$ là phân giác $\widehat{BAC}$. Theo tính chất tia phân giác:

$\frac{BH}{CH}=\frac{AB}{AC}\Rightarrow \frac{BC}{CH}=\frac{AB+AC}{AC}$

Ta có:

$\frac{HN}{HC}=\frac{BN-BH}{HC}=\frac{BN}{HC}-\frac{BH}{HC}=\frac{BC}{2HC}-\frac{BH}{HC}=\frac{AB+AC}{2AC}-\frac{AB}{AC}$

$=\frac{AC-AB}{2AC}=\frac{AC-CD}{2AC}=\frac{AD}{2AC}=\frac{AM}{AC}$

Theo định lý Talet đảo suy ra $MN\parallel AH$

Ta có đpcm.

 

Akai Haruma
30 tháng 1 2021 lúc 20:59

Hình vẽ 1:

undefined

Akai Haruma
30 tháng 1 2021 lúc 21:36

2. 

Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,E$ thẳng hàng ta có:

$\frac{AE}{EC}.\frac{IM}{AI}.\frac{BC}{BM}=1$

$\Leftrightarrow \frac{AE}{EC}=\frac{AI}{2IM}$

$\Rightarrow \frac{AE}{AC}=\frac{AI}{AI+2IM}$

$\Rightarrow \frac{AC}{AE}=\frac{AI+2IM}{AI}(1)$Lại áp dụng tính chất tia phân giác và định lý Talet:

$\frac{AC}{AB}=\frac{CD}{BD}=\frac{CM+DM}{BD}=\frac{BM+DM}{BD}$

$=\frac{BM}{BD}+\frac{DM}{BD}=\frac{AM}{AI}+\frac{IM}{AI}=\frac{AM+IM}{AI}=\frac{AI+2IM}{AI}(2)$

Từ $(1);(2)\Rightarrow \frac{AC}{AB}=\frac{AC}{AE}$

$\Rightarrow AB=AE$ (đpcm)

Akai Haruma
30 tháng 1 2021 lúc 21:40

Hình vẽ:

undefined


Các câu hỏi tương tự
Phương Nguyễn
Xem chi tiết
15- Hoàng
Xem chi tiết
Trần Duy Mạnh
Xem chi tiết
ha anh le
Xem chi tiết
_Banhdayyy_
Xem chi tiết
Ánh Vũ Ngọc
Xem chi tiết
Quang Minh
Xem chi tiết
Quang Minh
Xem chi tiết