Bài 1:
Không mất tổng quát giả sử $AB< AC$
Gọi $AH$ là phân giác $\widehat{BAC}$. Theo tính chất tia phân giác:
$\frac{BH}{CH}=\frac{AB}{AC}\Rightarrow \frac{BC}{CH}=\frac{AB+AC}{AC}$
Ta có:
$\frac{HN}{HC}=\frac{BN-BH}{HC}=\frac{BN}{HC}-\frac{BH}{HC}=\frac{BC}{2HC}-\frac{BH}{HC}=\frac{AB+AC}{2AC}-\frac{AB}{AC}$
$=\frac{AC-AB}{2AC}=\frac{AC-CD}{2AC}=\frac{AD}{2AC}=\frac{AM}{AC}$
Theo định lý Talet đảo suy ra $MN\parallel AH$
Ta có đpcm.
2.
Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,E$ thẳng hàng ta có:
$\frac{AE}{EC}.\frac{IM}{AI}.\frac{BC}{BM}=1$
$\Leftrightarrow \frac{AE}{EC}=\frac{AI}{2IM}$
$\Rightarrow \frac{AE}{AC}=\frac{AI}{AI+2IM}$
$\Rightarrow \frac{AC}{AE}=\frac{AI+2IM}{AI}(1)$Lại áp dụng tính chất tia phân giác và định lý Talet:
$\frac{AC}{AB}=\frac{CD}{BD}=\frac{CM+DM}{BD}=\frac{BM+DM}{BD}$
$=\frac{BM}{BD}+\frac{DM}{BD}=\frac{AM}{AI}+\frac{IM}{AI}=\frac{AM+IM}{AI}=\frac{AI+2IM}{AI}(2)$
Từ $(1);(2)\Rightarrow \frac{AC}{AB}=\frac{AC}{AE}$
$\Rightarrow AB=AE$ (đpcm)