Những câu hỏi liên quan
zZz Cool Kid_new zZz
Xem chi tiết
tth_new
16 tháng 7 2019 lúc 19:45

Sửa đề:

Cho a, b, c > 1(chỗ này là ý tui, dùng Wolfram Alpha sẽ thấy nếu không sửa như vầy thì đẳng thức không xảy ra). CMR:

\(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\) (cái này là ý chủ tus đấy nhá!)

\(\Leftrightarrow\frac{2a}{2a-1}+\frac{2b}{2b-1}+\frac{2c}{2c-1}\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\) (tách ghép vế trái + làm chặt BĐT do \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};..\))

\(\Leftrightarrow\frac{2a^2-4a+2}{a\left(2a-1\right)}+\frac{2b^2-4b+2}{b\left(2b-1\right)}+\frac{2c^2-4c+1}{c\left(2c-1\right)}\ge0\) (chuyển vế + quy đồng)

\(\Leftrightarrow\frac{2\left(a-1\right)^2}{a\left(2a-1\right)}+\frac{2\left(b-1\right)^2}{b\left(2b-1\right)}+\frac{2\left(c-1\right)^2}{c\left(2c-1\right)}\ge0\) (đúng)

Đẳng thức xảy ra khi a = b = c = 1

Vậy ta có đpcm.

Bình luận (0)
Phùng Minh Quân
16 tháng 7 2019 lúc 21:30

\(\frac{1}{2a-1}+1\ge\frac{\left(1+1\right)^2}{2a-1+1}=\frac{4}{2a}=\frac{2}{a}\)

Bình luận (0)
Kiệt Nguyễn
30 tháng 3 2020 lúc 6:24

HSG Bắc Ninh 2018-2019

Có \(\frac{1}{2a-1}\ge\frac{1}{a^2}\);\(\frac{1}{2b-1}\ge\frac{1}{b^2}\);\(\frac{1}{2c-1}\ge\frac{1}{c^2}\)

\(\Rightarrow\text{Σ}_{cyc}\frac{1}{2a-1}+3\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+3\)

Lại có \(\frac{1}{a^2}+\frac{1}{b^2}\ge^{co-si}\frac{2}{ab}\ge\frac{8}{\left(a+b\right)^2}\)

\(\frac{8}{\left(a+b\right)^2}+2\ge\frac{8}{a+b}\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+2\ge\frac{8}{a+b}\)

Tương tự ta có \(\frac{1}{b^2}+\frac{1}{c^2}+2\ge\frac{8}{b+c}\);\(\frac{1}{c^2}+\frac{1}{a^2}+2\ge\frac{8}{c+a}\)

\(\Rightarrow2\left(\text{Σ}_{cyc}\frac{1}{a^2}+3\right)\ge\text{Σ}_{cyc}\frac{8}{a+b}\)

\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+3\ge\text{Σ}_{cyc}\frac{4}{a+b}\)

\(\RightarrowĐPCM\left("="\Leftrightarrow a=b=c=1\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
Tiến Nguyễn Minh
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 22:19

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:26

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:35

4c, 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)

Bình luận (0)
 Khách vãng lai đã xóa
Son Nguyen Cong
Xem chi tiết

Đặt  x = \(\frac{1}{2a+1},y=\frac{1}{2b+1},z=\frac{1}{2c+1}\)

Khi đó \(a=\frac{1-x}{2x},b=\frac{1-y}{2y},c=\frac{1-z}{2z}\)

Ta thấy 0 < x, y, z < 1 và x + y + z \(\ge1\)

Bất đẳng thức cần chứng minh trở thành :

\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\ge\frac{3}{7}\)

Áp dụng bất đẳng thức Bunhiacốpxki ta có :

\(\frac{x}{3-2x}+\frac{y}{3-2y}+\frac{z}{3-2z}\)

\(=\frac{x^2}{3x-2x^2}+\frac{y^2}{3y-2y^2}+\frac{z^2}{3z-2z^2}\)

\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-2\left(x^2+y^2+z^2\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{3\left(x+y+z\right)-\frac{2}{3}\left(x+y+z\right)^2}\)

\(=\frac{3}{\frac{9}{x+y+z}-2}\ge\frac{3}{7}\)

Cbht

Bình luận (0)
Nguyễn Bùi Đại Hiệp
Xem chi tiết
Khôi Bùi
7 tháng 4 2019 lúc 10:30

Do a ; b ; c \(\ge1>0\) , áp dụng BĐT Cô - si cho 2 số , ta được :

\(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

=> BĐT được c/m

Áp dụng BĐT trên vào bài toán , ta có :

\(\frac{1}{2a-1}+1\ge\frac{4}{2a-1+1}=\frac{2}{a}\left(1\right)\)

Tương tự : \(\frac{1}{2b-1}+1\ge\frac{2}{b};\frac{1}{2c-1}+1\ge\frac{2}{c}\left(2\right)\)

Từ ( 1 ) ; ( 2 ) , ta có : \(\frac{1}{2a-1}+\frac{1}{2b-1}+\frac{1}{2c-1}+3\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}\left(3\right)\)

Tiếp tục áp dụng BĐT phụ \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ( đã c/m ) , ta có :

\(\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{a}+\frac{1}{c}\right)\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{a+c}\left(4\right)\)

Từ ( 3 ) ; ( 4 ) \(\Rightarrow\) đpcm

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2a-1=1\\2b-1=1\\2c-1=1;a=b=c\end{matrix}\right.\)

\(\Leftrightarrow a=b=c=1\)

Vậy ...

Bình luận (0)
Nguyễn Thị Minh Thảo
Xem chi tiết
Kiệt Nguyễn
6 tháng 12 2020 lúc 8:43

Áp dụng bất đẳng thức cơ bản dạng\(\left(x+y\right)^2\ge4xy\), ta được: \(\left(a+2b\right)^2=\left(\frac{2a+b}{2}+\frac{3b}{2}\right)^2\ge4.\frac{2a+b}{2}.\frac{3b}{2}=3b\left(2a+b\right)\)

\(\Rightarrow\frac{2a+b}{a+2b}\le\frac{a+2b}{3b}\Rightarrow\frac{2a+b}{a\left(a+2b\right)}\le\frac{1}{3}\left(\frac{2}{a}+\frac{1}{b}\right)\)

Tương tự, ta có: \(\frac{2b+c}{b\left(b+2c\right)}\le\frac{1}{3}\left(\frac{2}{b}+\frac{1}{c}\right)\)\(\frac{2c+a}{c\left(c+2a\right)}\le\frac{1}{3}\left(\frac{2}{c}+\frac{1}{a}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{2a+b}{a\left(a+2b\right)}+\frac{2b+c}{b\left(b+2c\right)}+\frac{2c+a}{c\left(c+2a\right)}\)

Đẳng thức xảy ra khi a = b = c 

Bình luận (0)
 Khách vãng lai đã xóa
Vinh Lê Thành
Xem chi tiết
Toi da tro lai va te hai...
31 tháng 5 2020 lúc 10:51

\(1-\frac{a^2b}{2+a^2b}\ge1-\frac{a^2b}{3.\sqrt[3]{a^2b}}\)\(\rightarrow1-3\sqrt[3]{a^4b^2}=3.\sqrt[3]{ab.ab.a^2}\rightarrow.....\)

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
31 tháng 5 2020 lúc 10:53

BĐT cần chứng minh tương đương với \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Áp dụng BĐT Cauchy ta có: \(2+a^2b=1+1+a^2b\ge3\sqrt[3]{a^2b}\)

Do đó ta được \(\frac{a^2b}{1+a^2b}\le\frac{a^2b}{3\sqrt[3]{a^2b}}=\frac{a\sqrt[3]{ab^2}}{3}\)

Hoàn toàn tương tự ta được \(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le\frac{a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}}{3}\)

Cũng theo BĐT Cauchy ta được \(\sqrt[3]{ab^2}\le\frac{a+b+b}{3}=\frac{a+2b}{3}\)

\(\Rightarrow a\sqrt[3]{ab^2}\le\frac{a\left(a+2b\right)}{3}=\frac{a^2+2ab}{3}\)

Tương tự cũng được \(a\sqrt[3]{ab^2}+b\sqrt[3]{bc^2}+c\sqrt[3]{ca}\le\frac{\left(a+b+c\right)^2}{3}=3\)

Từ đó ta được\(\frac{a^2b}{2+a^2b}+\frac{b^2c}{2+b^2c}+\frac{c^2a}{2+c^2a}\le1\)

Vậy BĐT được chứng minh. Dấu "=" xảy ra <=> a=b=c=1

Bình luận (0)
 Khách vãng lai đã xóa
Lưu Thùy Dương
15 tháng 6 2020 lúc 17:36

1njfnjgjggnvfkgnbmvfvm 

Bình luận (0)
 Khách vãng lai đã xóa
Anh Pha
Xem chi tiết
Phan Trọng Đĩnh
26 tháng 5 2019 lúc 23:35

a) Dùng (a+b)2≥4ab
Chia hai vế cho a+b ( vì ab khác 0)
Ta có a+b≥\(\frac{4ab}{a+b}\) (Chuyển ab sang a+b) ta có
\(\frac{a+b}{ab}\)\(\frac{4}{a+b}\) <=> \(\frac{1}{a}\)+\(\frac{1}{b}\)\(\frac{4}{a+b}\)

Bình luận (0)
Nghiêm Thị Nhân Đức
Xem chi tiết
Copxki Minh
2 tháng 12 2020 lúc 22:25

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z

Bình luận (0)
 Khách vãng lai đã xóa
Trần Lâm Thiên Hương
Xem chi tiết
Trần Lâm Thiên Hương
15 tháng 5 2018 lúc 21:03

Mình nhầm, phải là \(\le\frac{1}{3}\)mọi người làm giúp mình với mình cần gấp

Bình luận (0)
zZz Cool Kid_new zZz
1 tháng 8 2020 lúc 19:31

Theo BĐT Cauchy Schwarz và các biến đổi cơ bản ta dễ có được:
\(\frac{a^2}{\left(2a+b\right)\left(2a+c\right)}=\frac{a^2}{2a\left(a+b+c\right)+2a^2+bc}=\frac{1}{9}\left[\frac{\left(2a+a\right)^2}{2a\left(a+b+c\right)+2a^2+bc}\right]\)

\(\le\frac{1}{9}\left[\frac{4a^2}{2a\left(a+b+c\right)}+\frac{a^2}{2a^2+bc}\right]=\frac{1}{9}\left(\frac{2a}{a+b+c}+\frac{a^2}{2a^2+bc}\right)\)

\(\Rightarrow LHS\le\frac{1}{9}\left(2+\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}\right)\)

Tiếp tục theo BĐT Cauchy Schwarz dạng Engel:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

Ta thực hiện phép đổi biến thì:

\(\frac{ab}{ab+2c^2}+\frac{bc}{bc+2a^2}+\frac{ca}{ca+2b^2}\ge1\)

Đến đây là phần của bạn

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
3 tháng 8 2020 lúc 19:10

(Vào thống kê hỏi đáp xem ảnh nhé! 2 cách, cách đầu dùng kỹ thuật uvw, cách kia là SOS)

Bình luận (0)
 Khách vãng lai đã xóa