CMR không tồn tại cặp giá trị nguyên (x;y) thỏa mãn:\(x^2-2-2y^2=2011\)
chứng minh không tồn tại cặp giá trị nguyên x,y thỏa mãn : \(x^2-2-2y^2=2011\)
chứng minh rằng không tồn tại cặp giá trị nguyên (x;y) thỏa mãn :\(x^2-2-2y^2=2011\)
CMR: không tồn tại giá trị x thỏa mãn:
x^4+x^3+x^2+x+1=0
Chứng minh: Không tồn tại giá trị x để \(P=\dfrac{3\sqrt{x}+5}{\sqrt{x}+2}\) là số nguyên
\(P=\dfrac{3\sqrt{x}+6-1}{\sqrt{x}+2}=3-\dfrac{1}{\sqrt{x}+2}< 3\)
\(P=\dfrac{6\sqrt{x}+10}{2\left(\sqrt{x}+2\right)}=\dfrac{5\left(\sqrt{x}+2\right)+\sqrt{x}}{2\left(\sqrt{x}+2\right)}=\dfrac{5}{2}+\dfrac{\sqrt{x}}{2\left(\sqrt{x}+2\right)}\ge\dfrac{5}{2}\)
\(\Rightarrow\dfrac{5}{2}\le P< 3\) ; \(\forall x\in\) TXĐ nên không tồn tại x để P nguyên (giữa 5/2 và 3 không có số nguyên nào)
Cho 12 Số tự nhiên bất kì lấy các giá trị thuộc {1;2;3} ghép 2 số cào 1 cặp ta đc 6 cặp, CMR tồn tại 2 cặp có tổng các chữ số trong cặp = nhau
Cho 12 số tự nhiên bất kì lấy các giá trị thuộc tập hợp(1;2;3). Ghép hai số thành một cặp ta được 6 cặp . Cmr tồn tại 2 cặp mà tổng các số trong hai cặp bằng nhau
Cho P(x) là môtf đa thức với hệ số nguyên biết rằng tồn tại 4 giá trị khác nhau của x để P(x)=2011. Có hay không giá trị nguyên của x để P(x)=2018?
bạn on web maytinhbotui.vn à mà có câu hỏi này vậy
Có bao nhiêu giá trị nguyên của tham số m để tồn tại cặp số (x;y) thỏa mãn e 2 x + y + 1 - e 3 x + 2 y = x + y + 1 đồng thời thỏa mãn log 2 2 2 x + y - 1 - m + 4 log 2 x + m 2 + 4 = 0 .
A. 3
B. 4
C. 5
D. 6
Đáp án A
Ta có e 2 x + y + 1 - e 3 x + 2 y = x + y + 1 ⇔ e 2 x + y + 1 + 2 x + y + 1 = e 3 x + 2 y + 3 x + 2 y *
Xét f t = e t + t là hàm số đồng biến trên ℝ mà f 2 x + y + 1 = f 3 x + 2 y ⇒ y = 1 - x
Khi đó log 2 2 2 x + y - 1 - m + 4 log 2 x + m 2 + 4 = 0
Phương trình (1) có nghiệm khi và chỉ khi ∆ = m + 4 - 4 m 2 + 4 ≥ 0 ⇔ 0 ≤ m ≤ 8 3 .
Với mỗi số nguyên không âm n, đặt \(a_n=\sqrt{3n^2+2\left(n+1\right)}\). CMR không tồn tại giá trị của n sao cho an là một số hữu tỉ
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)