Cho tam giác ABC không vuông. Kẻ BD vuông AC tại D, kẻ CE vuông AB tại E. Chứng minh: BD + CE < AB + AC
Cho tam giác ABC không vuông. Kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E. Chứng minh BD + CE < AB + AC?
Cho tam giác ABC không vuông. Kẻ BD vuông AC tại D, kẻ CE vuông AB tại E. Chứng minh: BD + CE < AB + AC
Mấy bạn giúp mình đi ạ :))
Ta có : BD < AB
: CE < AC => BD + CE < AB + AC ( đpcm )
Bài 1: Cho tam giác ABC nhọn có BD vuông góc với AC tại D. CE vuông góc với AB tại E. Chứng minh rằng: BD + CE < AB + AC.
Bài 2: Cho tam giác ABC,điểm D nằm giữa A và C ( BD không vuông góc với AC). Gọi E. và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BD. So sánh AC với tổng AE + CF.
Bài 3: Cho tam giác ABC, từ A hạ AH vuông góc với BC ( H thuộc BC). Chứng minh AH < AB + AC/2
Mọi người giúp mình với ạ. Mình cần gấp. Cảm ơn ạ
Bài 1:
ΔABD vuông tại D
=>BD<AB
ΔACE vuông tại E
=>CE<AC
=>BD+CE<AB+AC
Câu 4 Cho tam giác ABC cân tại A (Góc A<90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H.
a) Chứng minh: BD = CE b, Chứng minh: tam giác BHC cân
b) Chứng minh: AH là đường trung trực của BC
c) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. Kẻ AM vuông góc với CK. Chứng minh E, H, K thẳng hàng
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE và AD=AE
b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EB=DC
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
hay ΔHBC cân tại H
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AH là đường trung trực của BC
. Chứng minh rằng: AI là phân giác ∠BAC sao cho tam giác ABC nhọn cân tại A . Kẻ BD vuông góc AC tại D, kẻ CE vuông góc AB tại E. CE cắt BD tại I.
Cho tam giác ABC có AB=AC,kẻ BD vuông góc AC (D thuộc AC ),CE vuông góc AB (E thuộc AB)
a,BD cắt CE tại E,chứng minh tam giác EBF=TAM GIÁC BCE
cho tam giác abc có ab=ac. kẻ bd vuông góc với ac tại d kẻ ce vuông góc ab tại e. Gọi I là giao điểm của BD và CE. CA chứng minh rằng:
a) tam giác ABD= tam giác ACE
b) EI=DI
AI vuông góc với BC
Cho tam giác ABC cân tại A, kẻ BD vuông góc với AC (D thuộc AC), CE vuông góc với AB( E thuộc AB)
a) Chứng minh BD=CE
b) Gọi I là giao điểm của BD và CE. Chứng minh tam giác IBC cân
Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)
góc ABC = góc ACB ( cân tại A)
BC chung
==> BD=CE
b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên
góc BCE = góc DBC
--> IBC cân tại I
Bài. Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC). Kẻ CE vuông góc với AB (E thuộc AB). BD và CE cắt nhau tại I. Là Là a) Cho BC = 5cm, DC = 3cm. Tính độ dài BD. b) Chứng minh rằng BD =CE. c) thẳng AI cắt BC tại H. Chứng minh rằng AI vuông góc với BC tại H.
Bài:_ Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC (D thuộc AC). Kẻ CE vuông góc với AB (E thuộc AB). BD và CE cắt nhau tại I. Là Là a) Cho BC = 5cm, DC = 3cm. Tính độ dài BD. b) Chứng minh rằng BD =CE. c) thẳng AI cắt BC tại H. Chứng minh rằng AI vuông góc với BC tại H.
a: BD=4cm
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra:BD=CE
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
=>AH vuông góc với BC tại H
mà ΔACB cân tại A
nên AH vuông góc với BC tại trung điểm của BC
Xin lỗi nhưng em mới đến phần ôn tập tam giác là cùng ạ