(x-1) (5x+3)=(3x-8) (x-1)
Giải các phương trình sau:
a. (x−1)(5x+3)=(3x−8)(x−1)(x−1)(5x+3)=(3x−8)(x−1)
b. 3x(25x+15)−35(5x+3)=0
a. (x−1)(5x+3)=(3x−8)(x−1)(x−1)(5x+3)=(3x−8)(x−1)
⇔(x−1)(5x+3)−(3x−8)(x−1)=0⇔(x−1)[(5x+3)−(3x−8)]=0⇔(x−1)(5x+3−3x+8)=0⇔(x−1)(2x+11)=0⇔(x−1)(5x+3)−(3x−8)(x−1)=0⇔(x−1)[(5x+3)−(3x−8)]=0⇔(x−1)(5x+3−3x+8)=0⇔(x−1)(2x+11)=0
⇔x−1=0⇔x−1=0hoặc 2x+11=02x+11=0
+ x−1=0⇔x=1x−1=0⇔x=1
+ 2x+11=0⇔x=−5,52x+11=0⇔x=−5,5
Phương trình có nghiệm x = 1 hoặc x = -5,5
b. 3x(25x+15)−35(5x+3)=03x(25x+15)−35(5x+3)=0
⇔15x(5x+3)−35(5x+3)=0⇔(15x−35)(5x+3)=0⇔15x(5x+3)−35(5x+3)=0⇔(15x−35)(5x+3)=0
⇔15x−35=0⇔15x−35=0 hoặc 5x+3=05x+3=0
+ 15x−35=0⇔x=3515=7315x−35=0⇔x=3515=\(\frac{7}{3}\)
+ 5x+3=0⇔x=−355x+3=0⇔x=−\(\frac{3}{5}\)
Phương trình có nghiệm x=\(\frac{7}{3}\)x=\(\frac{7}{3}\) hoặc x=−\(\frac{3}{5}\)
Giải PT sau:
a, 3x - 7 = 0
b, 8 - 5x = 0
c, 3x - 2 = 5x + 8
d, \(\dfrac{3x-2}{3}\) = \(\dfrac{1-x}{2}\)
e, ( 5x + 1)(x - 3) = 0
f, (x + 1)(2x - 3) = 0
g, 4x(x + 3) - 5(x + 3) = 0
h, 8(x - 6) - 2x(6 - x) = 0
i, \(\dfrac{2}{x-1}\) + \(\dfrac{1}{x}\) = \(\dfrac{2x+5}{x^2-x}\)
k, \(\dfrac{3}{x+2}\) - \(\dfrac{2}{x-2}\) = \(\dfrac{2-x}{x^2-4}\)
m, \(\dfrac{3}{x}\) - \(\dfrac{2}{x-3}\) = \(\dfrac{4-x}{x^2-3}\)
n,\(\dfrac{3}{2x+10}\)+ \(\dfrac{2x}{x^2-25}\) = \(\dfrac{3}{x-5}\)
u, \(\dfrac{2}{x+3}\) - \(\dfrac{3}{x-2}\) = \(\dfrac{x+4}{\left(x+3\right)\left(x-2\right)}\)
a, 3x - 7 = 0
<=> 3x = 7
<=> x = 7/3
b, 8 - 5x = 0
<=> -5x = -8
<=> x = 8/5
c, 3x - 2 = 5x + 8
<=> -2x = 10
<=> x = -5
e) Ta có: \(\left(5x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-1\\x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{5};3\right\}\)
`a ) 3x - 7 = 0`
`\(\Leftrightarrow \) 3x = 7`
`\(\Leftrightarrow \) x = 7/3`
Vậy `S = {-7/3}`
Bài 4: Tìm x, biết:
a) 3(2x – 3) + 2(2 – x) = –3 ; b) x(5 – 2x) + 2x(x – 1) = 13 ;
c) 5x(x – 1) – (x + 2)(5x – 7) = 6 ; d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8 ;
e) 2(5x – 8) – 3(4x – 5) = 4(3x – 4) + 11; f) 2x(6x – 2x 2 ) + 3x 2 (x – 4) = 8.
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
a/ \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy: \(x=\dfrac{1}{2}\)
===========
b/ \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
\(\Leftrightarrow x=\dfrac{13}{3}\)
Vậy: \(x=\dfrac{13}{3}\)
==========
c/ \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
\(\Leftrightarrow x=1\)
Vậy: \(x=1\)
==========
d/ \(3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\)
\(\Leftrightarrow6x^2+9x-6x^2+4x-15x+10=8\)
\(\Leftrightarrow-2x=-2\)
\(\Leftrightarrow x=1\)
Vậy: \(x=1\)
==========
e/ \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
\(\Leftrightarrow x=\dfrac{2}{7}\)
Vậy: \(x=\dfrac{2}{7}\)
==========
f/ \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow-x^3=8\)
\(\Leftrightarrow x=-2\)
Vậy: \(x=-2\)
GPT sau:
a) ( x-1)(5x+3)= (3x - 8 )(x-1)
b) 3x ( 25x + 15 )- 35 ( 5x+3) = 0
c) (2-3x ) ( x-11)=(3x-2)(2- 5x)
Giups mk vs thank cacs bn
b) PT \(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(15x-35\right)\left(5x+3\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) PT \(\Leftrightarrow\left(2-3x\right)\left(x-11\right)+\left(2-3x\right)\left(2-5x\right)=0\)
\(\Leftrightarrow\left(2-3x\right)\left(-9-4x\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{9}{4}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{2}{3};-\dfrac{9}{4}\right\}\)
a)(x-1)(5x+3)=(3x-8)(x-1)
\(\Leftrightarrow\)(x-1)(5x+3)-(3x-8)(x-1)=0
\(\Leftrightarrow\left(x-1\right)\left(5x-3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x-5\right)=0\)
\(\left[{}\begin{matrix}x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\dfrac{5}{2}\right\}\)
a) Ta có: \(\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)
\(\Leftrightarrow5x^2+3x-5x-3=3x^2-3x-8x+8\)
\(\Leftrightarrow5x^2-2x-3=3x^2-11x+8\)
\(\Leftrightarrow5x^2-2x-3-3x^2+11x-8=0\)
\(\Leftrightarrow2x^2+9x-11=0\)
\(\Leftrightarrow2x^2+11x-2x-11=0\)
\(\Leftrightarrow x\left(2x+11\right)-\left(2x+11\right)=0\)
\(\Leftrightarrow\left(2x+11\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+11=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-11\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{11}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{11}{2};1\right\}\)
b) Ta có: \(3x\left(25x+15\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow3x\cdot5\cdot\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow15x\left(5x+3\right)-35\left(5x+3\right)=0\)
\(\Leftrightarrow\left(5x+3\right)\left(15x-35\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x+3=0\\15x-35=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=-3\\15x=35\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=\dfrac{7}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{3}{5};\dfrac{7}{3}\right\}\)
c) Ta có: \(\left(2-3x\right)\left(x-11\right)=\left(3x-2\right)\left(2-5x\right)\)
\(\Leftrightarrow2x-22-3x^2+33x=6x-15x^2-4+10x\)
\(\Leftrightarrow-3x^2+35x-22=-15x^2+16x-4\)
\(\Leftrightarrow-3x^2+35x-22+15x^2-16x+4=0\)
\(\Leftrightarrow12x^2+19x-18=0\)
\(\Leftrightarrow12x^2+27x-8x-18=0\)
\(\Leftrightarrow3x\left(4x+9\right)-2\left(4x+9\right)=0\)
\(\Leftrightarrow\left(4x+9\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+9=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-9\\3x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{9}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{9}{4};\dfrac{2}{3}\right\}\)
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số:
a.3x-5 >15-x b.3(x-2).(x+2)<3x^2+x
c.(2x+1)^2+(1-x).3x<hoặc=(x+2)^2
d.5x-20/3 - 2x^2+x/2 > x.(1-3x)/3 -5x/4
e.4-2x <hoặc= 3x-6
f.(x+4).(5x-1)>5x^2+16x+2
g)x.(2x-1)-8<5-2x(1-x)
h)3x-1/4 - 3.(x-2)/8 - 1>5-3x/2
a: 3x-5>15-x
=>4x>20
hay x>5
b: \(3\left(x-2\right)\left(x+2\right)< 3x^2+x\)
=>3x2+x>3x2-12
=>x>-12
tìm x
a) ( 3x-1)(2x+7)-(x+1)(6x-5)=16
b) (10x+9)x-(5x-1)(2x+3)=8
c) x.(x+1)(x+6)-x3=5x
d) (3x-5)(7-5x)+(5x+2)(3x-2)-2=0
a) (3x - 1)(2x + 7) - (x + 1)(6x - 5) = 16
6x2 + 21x - 2x - 7 - 6x2 + 5x - 6x + 5 = 16
(6x2 - 6x2) + (21x - 2x + 5x - 6x) + (-7 + 5) = 16
18x - 2 = 16
18x = 18
x = 1
Vậy x = 1
b) (10x + 9)x - (5x - 1)(2x + 3) = 8
10x2 + 9x - 10x2 - 15x + 2x + 3 = 8
(10x2 - 10x2) + (9x - 15x + 2x) + 3 = 8
-4x + 3 = 8
-4x = 5
x = \(\frac{-5}{4}\)
Vậy x = \(\frac{-5}{4}\)
c) x(x + 1)(x + 6) - x3 = 5x
(x2 + x)(x + 6) - x3 = 5x
x3 + 7x2 + 6x - x3 = 5x
7x2 + 6x = 5x
x(7x + 6) = 5x
=> 7x + 6 = 5
7x = -1
x = \(\frac{-1}{7}\)
Vậy x = \(\frac{-1}{7}\)
d) (3x - 5)(7 - 5x) + (5x + 2)(3x - 2) - 2 = 0
21x - 15x2 - 35 + 25x + 15x2 - 10x + 6x - 4 - 2 = 0
(-15x2 + 15x2) + (21x + 25x - 10x + 6x) + (-35 - 4 - 2) = 0
42x - 41 = 0
42x = 41
x = \(\frac{41}{42}\)
Vậy x = \(\frac{41}{42}\)
Bài 2 : Tìm x , biết
a) ( 3x -1 ) (2x+7) - ( x +1) (6x-5 ) = 16
b) ( 10x +9 )x - ( 5x -1 ) (2x+3 )= 8
c) ( 3x - 5 ) ( 7- 5x ) + ( 5x +2 )( 3x-2 ) -2 = 0
d) x(x + 1) ( x+6 ) - x3 = 5x
Giải phương trình
1) 2x+1=15-5x
2) 3x-2=2x+5
3) 7 (x-2)=5 (3x+1)
4) 2x+5=20-3x
5) -4x +8=0
6) x-3=10-5x
7) 3x-1=x+3
8) 2(x+1)=5x-7
\(1) 2x+1=15-5x \)
\(⇔2x+5x=15-1\)
\(⇔7x=14\)
\(⇔x=2\)
vậy pt có 1 nghiệm là x=2
\(2) 3x-2=2x+5\)
\(⇔3x-2x=5+2\)
\(⇔x=7\)
vậy pt có 1 nghiệm là x=7
\(3) 7(x-2)=5(3x+1)\)
\(⇔7x-14=15x+5\)
\(⇔7x-15x=5+14\)
\(⇔-8x=19\)
\(⇔x=-\dfrac{19}{8}\)
vậy pt có 1 nghiệm là x=-\(\dfrac{19}{8}\)
\(4) 2x+5=20-3x\)
\(⇔2x+3x=20-5\)
\(⇔5x=15\)
\(⇔x=3\)
vậy pt có 1 nghiệm là x=3
\(5) -4x+8=0\)
\(⇔-4x=-8\)
\(⇔x=2\)
vậy pt có 1 nghiệm là x=2
\(6) x-3=10-5x\)
\(⇔x+5x=10+3\)
\(⇔6x=13\)
\(⇔x=\dfrac{13}{6}\)
vậy pt có 1 nghiệm là \(x=\dfrac{13}{6}\)
\(7) 3x-1=x+3\)
\(⇔3x-x=3+1\)
\(⇔2x=4\)
\(⇔x=2\)
vậy pt có 1 nghiệm là x=2
\(8) 2(x+1)=5x-7\)
\(⇔2x+2=5x-7\)
\(⇔2x-5x=-7-2\)
\(⇔-3x=-9\)
\(⇔x=3\)
vậy pt có 1 nghiệm là x=3.
a) (x-1)(5x+3)=(3x-8)(x-1)
b) 3x(25x+15)-35(5x+3)=0
a) (x - 1)(5x + 3) = (3x - 8)(x - 1)
\(\Leftrightarrow\left(x-1\right)\left(5x+3\right)-\left(3x-8\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x+3-3x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(2x+11\right)=0\)
\(\Leftrightarrow x-1=0\Rightarrow x=1\)
và\(2x+11=0\Rightarrow x=\frac{-11}{2}\)
giải các phương trình sau:
a.3(x-2)-10=5(2x + 1)
b.3x + 2=8 -2(x-7)
c.2x-(2+5x)= 4(x + 3)
d.5-(x +8)=3x + 3(x-9)
e.3x - 18 + x= 12-(5x + 3)
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27