Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
Cho x,y,z thỏa mãn x^2+y^2 chia hết cho 16. CMR a, xy chia hết cho 4, b,xy chia hết cho 16
Lời giải:
Vì $x^2+y^2$ chẵn nên $x,y$ có cùng tính chất chẵn lẻ
Nếu $x,y$ cùng lẻ. Đặt $x=2k+1, y=2m+1$ với $k,m$ nguyên
Khi đó:
$x^2+y^2=(2k+1)^2+(2m+1)^2=4(k^2+m^2+k+m)+2$ không chia hết cho $4$
$\Rightarrow x^2+y^2$ không chia hết cho $16$ (trái giả thiết)
Do đó $x,y$ cùng chẵn
Đặt $x=2k, y=2m$ với $k,m$ nguyên
a.
$xy=2k.2m=4km\vdots 4$ (đpcm)
b.
$x^2+y^2=(2k)^2+(2m)^2=4(k^2+m^2)\vdots 16$
$\Rightarrow k^2+m^2\vdots 4$
Tương tự lập luận ở trên, $k,m$ cùng tính chẵn lẻ. Nếu $k,m$ cùng lẻ thì $k^2+m^2$ không chia hết cho $4$ (vô lý) nên $k,m$ cùng chẵn.
Đặt $k=2k_1, m=2m_1$ với $k_1, m_1$ nguyên
Khi đó:
$xy=2k.2m=4km=4.2k_1.2m_1=16k_1m_1\vdots 16$ (đpcm)
Cho x , y , z thỏa mãn x2 + y2 = z2 . CMR :
a . Trong hai số x , y có ít nhất một số chia hết cho 3 .
b . Tích xy chia hết cho 12 .
Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3): vô lý nên ta có đpcm.
b) Tương tự câu a, ta cm được tồn tại 1 số trong x;y;z chia hết cho 4. Vậy ta có đpcm.
a)Tìm các số nguyên dương x, y thỏa mãn x+3 chia hết cho y, y+3 chia hết cho x
b)Tìm các số nguyên dương x, y thỏa mãn xy+x+y+2 chia hết cho cả x và y.
cho x,y là các số nguyên thỏa mãn:(x^2+1)chia hết cho(xy +1). Chứng minh (y^2+1) chia hết cho (xy+1)
Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1
hay x^2y^2 +y^2 chia hết xy+1.
Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1 Thêm và bớt 2xy+1
=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1
=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1 chia hết xy+1
Vì x^2+1 chia hết xy+1 nên y^2(x^2+1) chia hết xy+1
Hay x^2y^2 +y^2 chia hết xy+1.
Ta có x^2y^2+y^2=(x^2y^2 +2xy+1) +y^2 -2xy-1 Thêm và bớt 2xy+1
=(x^2y^2 +2xy+1) -2(xy+1) +y^2+1
=(xy+1)^2 -2(xy+1) +y^2+1 suy ra y^2+1 Chia hết xy+1
cho các số nguyên x,y thỏa mãn \(x^2-3xy+y^2\) chia hết cho 25 . CM : xy chia hết cho 25
Lời giải:
$x^2-3xy+y^2\vdots 25(1)$
$\Rightarrow x^2-3xy+y^2\vdots 5$
$\Leftrightarrow (x+y)^2-5xy\vdots 5$
$\Leftrightarrow (x+y)^2\vdots 5$
$\Rightarrow x+y\vdots 5$
$\Rightarrow (x+y)^2\vdots 25$
$\Leftrightarrow x^2+2xy+y^2\vdots 25(2)$
Từ $(1);(2)\Rightarrow 5xy\vdots 25$
$\Rightarrow xy\vdots 5$
Do đó $x$ hoặc $y$ chia hết cho $5$
Không mất tổng quát giả sử $x\vdots 5$
Do $x^2-3xy+y^2\vdots 25\vdots 5$ nên $y^2\vdots 5$
$\Rightarrow y\vdots 5$
$\Rightarrow xy\vdots 25$
Ta có đpcm.
Cho các số nguyên dương x,y,z thỏa mãn x^2+y^2=z^2. chứng minh B=x^3y-xy^3 chia hết cho 7
Cho các số nguyên dương x, y, z thỏa mãn: \(x^2+y^2=z^2\)
a) Chứng minh A=xy chia hết cho 12
b) Chứng minh B = \(x^3y-xy^3\) chia hết cho 7
a, Giả sử \(x,y \vdots 3\)
=> \(x^2 ;y^2 \) : 3 dư 1
=> \(z^2 = x^2+y^2 \) : 3 dư 2 ( vô lý vì \(z^2\) là số chính phương )
Vậy \(x\vdots 3y\vdots 3 => xy \vdots 3\)
Chứng minh tương tự \(xy \vdots 4\)
\((3;4) =1 => xy \vdots 12\)
Cho x,y thuộc Z thỏa mãn \(x^2+y^2\)chia hết cho 3.CMR x,y đều chia hết cho 3
1. Tìm các cặp số nguyên x, y
a, ( x-1)*(y+2)=7
b, xy-3x-y=0
c, x*(y-3)=-12
d, xy+2x+2y=-16
2. CTR:
a, ab(a+b) chia hết cho 2
b, ab+ba chia hết cho 11
c, aaa luôn chia hết cho 37
1. c, x(y - 3) = -12
Do x; y \(\in Z\Rightarrow y-3\in Z\)
Mà x(y - 13) = -12
=> x; y - 13 \(\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Ta có bảng :
x | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
y - 3 | -12 | 12 | -6 | 6 | -4 | 4 | -3 | 3 | -2 | 2 | -1 | 1 |
y | -9 | 15 | -3 | 9 | -1 | 7 | 0 | 6 | 1 | 5 | 2 | 4 |
@Đào Thị Ngọc Ánh
a, (x - 1)(y + 2) = 7
Do x; y \(\in Z\Rightarrow x-1;y+2\in Z\)
Mà (x - 1)(y + 2) = 7
=> x - 1; y + 2 \(\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Nếu \(\left\{{}\begin{matrix}x-1=1\\y+2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}x-1=-1\\y+2=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-9\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}x-1=7\\y+2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=-1\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}x-1=-7\\y+2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-3\end{matrix}\right.\) (thỏa mãn)
Vậy các cặp (x; y) thỏa mãn là (2; 5); (0; -9); (8; -1); (-6; -3)
@Đào Thị Ngọc Ánh
1. b, xy - 3x - y = 0
<=> xy - 3x = y
<=> x(y - 3) = y
<=> x(y - 3) - 3 = y - 3
<=> x(y - 3) - (y - 3) = 3
<=> (x - 1)(y - 3) = 3
Do x; y \(\in Z\Rightarrow x-1;y-3\in Z\)
Mà (x - 1)(y - 3) = 3
=> x - 1; y - 3 \(\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Nếu \(\left\{{}\begin{matrix}x-1=1\\y-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}x-1=-1\\y-3=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y=0\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}x-1=3\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\) (thỏa mãn)
Nếu \(\left\{{}\begin{matrix}x-1=-3\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=2\end{matrix}\right.\) (thỏa mãn)
Vậy các cặp (x; y) thỏa mãn là (2; 6); (0; 0); (4; 4); (-2; 2)
@Đào Thị Ngọc Ánh