trong mặt phẳng tọa độ oxy cho điểm M(2,1) ∆ có PTTQ 3x+4y+5=0. tìm khoảng cách từ M đến đt ∆
Trong mặt phẳng tọa độ Oxy, khoảng cách từ điểm M(3;-4) đến đường thẳng △ : 3 x - 4 y - 1 = 0 là
A. 12 5
B. 8 5
C. - 24 5
D. 24 5
Trong mặt phẳng tọa độ Oxy, khoảng cách từ điểm O(0;0) đến đường thẳng d: 3x-4y-5=0 là:
A. - 1 5
B. 1 5
C. 0.
D. 1.
Trong mặt phẳng Oxy, cho đường tròn (C): x²+y² -2x +4y=0 và đường thẳng delta: x+2y+7=0. Tìm tọa độ điểm M€(C) sao cho khoảng cách từ điểm M đến đường thẳng delta lớn nhất.
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=\sqrt{5}\)
Điểm M thuộc (C) thỏa mãn khoảng cách từ M tới \(\Delta\) lớn nhất khi M là giao điểm của (C) và đường thẳng d qua I và vuông góc \(\Delta\)
Phương trình d có dạng:
\(2\left(x-1\right)-1\left(y+2\right)=0\Leftrightarrow2x-y-4=0\)
Hệ pt tọa độ giao điểm (C) và d:
\(\left\{{}\begin{matrix}x^2+y^2-2x+4y=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+\left(2x-4\right)^2-2x+4\left(2x-4\right)=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=0\\y=2x-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}M\left(0;-4\right)\\M\left(2;0\right)\end{matrix}\right.\)
Với \(M\left(0;-4\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|-2.4+7\right|}{\sqrt{1^2+2^2}}=\dfrac{1}{\sqrt{5}}\)
Với \(M\left(2;0\right)\Rightarrow d\left(M;\Delta\right)=\dfrac{\left|2+0+7\right|}{\sqrt{1^2+2^2}}=\dfrac{9}{\sqrt{5}}\)
Do \(\dfrac{9}{\sqrt{5}}>\dfrac{1}{\sqrt{5}}\) nên \(M\left(2;0\right)\) là điểm cần tìm
Trong mặt phẳng tọa độ Oxy cho hai đường thẳng:
đt a: 3x- 2y+ 5=0
đt b: 2x+3y-7=0
tìm M thuộc Ox để khoảng cách từ M đến đt a bằng \(\sqrt{5}\)
Trong mặt phẳng Oxy, khoảng cách từ điểm M (3;-4) đến đường thẳng ∆ : 3x - 4y - 1 = 0
A. 8 5
B. 24 5
C. 12 5
D. - 24 5
Trong mặt phẳng Oxy, khoảng cách từ điểm M (3;-4) đến đường thẳng D: 3x-4y-1=0
A. 8 5
B. 24 5
C. 12 5
D. - 24 5
Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(1;2), B(2;1) và M(1;3). a, Viết phương trình đường thẳng AB b, Tính khoảng cách từ điểm M đến đường thẳng △: 3x + 4y + 10 = 0 c, Viết phương trình đường thẳng d, biết d đi qua điểm A và cắt tia Ox, Oy thứ tự tại C,N sao cho tam giác OCN có diện tích nhỏ nhất? Mn giúp mình với 😥😥
a: A(1;2); B(2;1)
=>\(\overrightarrow{AB}=\left(1;-1\right)\)
=>VTPT là (1;1)
Phương trình đường thẳng AB là:
1(x-1)+2(y-1)=0
=>x-1+2y-2=0
=>x+2y-3=0
b:
M(1;3); Δ: 3x+4y+10=0
Khoảng cách từ M đến Δ là:
\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)
Trong mặt phẳng Oxy, khoảng cách từ điểm M(3;-4) đến đường thẳng d: 3x - 4y - 1 = 0 là:
A. 8 5
B. 12 5
C. 16 5
D. 24 5
Đáp án: D
Khoảng cách từ điểm M(3;-4) đến đường thẳng d: 3x - 4y - 1 = 0 là:
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-1;2;-5). Tính khoảng cách từ điểm M đến mặt phẳng (Oxy).
A. √30
B. √5
C. 25
D. 5
Đáp án D
Khoảng cách từ điểm M tới (Oxy) là |zM|=|-5|=5.