Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(1;2), B(2;1) và M(1;3). a, Viết phương trình đường thẳng AB b, Tính khoảng cách từ điểm M đến đường thẳng △: 3x + 4y + 10 = 0 c, Viết phương trình đường thẳng d, biết d đi qua điểm A và cắt tia Ox, Oy thứ tự tại C,N sao cho tam giác OCN có diện tích nhỏ nhất? Mn giúp mình với 😥😥
a: A(1;2); B(2;1)
=>\(\overrightarrow{AB}=\left(1;-1\right)\)
=>VTPT là (1;1)
Phương trình đường thẳng AB là:
1(x-1)+2(y-1)=0
=>x-1+2y-2=0
=>x+2y-3=0
b:
M(1;3); Δ: 3x+4y+10=0
Khoảng cách từ M đến Δ là:
\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)