Do d qua K nên pt d có dạng: \(y=kx-k+3\) (với \(k\ne0;3\))
Gọi A và B lần lượt là giao điểm của d với Ox; Oy
\(\Rightarrow\left\{{}\begin{matrix}A\left(\dfrac{k-3}{k};0\right)\\B\left(0;-k+3\right)\end{matrix}\right.\)
Để A; B có hoành độ dương (do nằm trên các tia Ox; Oy) \(\Rightarrow k< 0\)
Khi đó: \(OA=\dfrac{k-3}{k}\) ; \(OB=-k+3\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=6\Leftrightarrow\dfrac{\left(k-3\right)\left(-k+3\right)}{k}=12\)
\(\Leftrightarrow k^2+6k+9=0\Leftrightarrow k=-3\)
Phương trình d: \(y=-3x+6\)