Cho tam giác ABC có AB< AC và hai đường cao AH và BK cắt nhau tại I.Nối IC.
a) cho biết hình chiếu của AB trên BC ,trên AC , trên BK là đoạn nào ?
b)Chứng minh:AH<AB+AC trên 2.
c)chứng minh IB<IC
d)chứng minh IB+IC <AB+AC
Cho tam giác ABC vuông tại A, kể đường cao AH. Biết BH = 2 cm, BC = 8 cm. a)Tính AB. AC và AH b)Tính BAB c)Trên cạnh AC lấy điểm K tùy ý (K khác A và C),gọi D là hình chiếu của A lên BK. Chứng minh AB=BC.sin BDH
a: CH=8-2=6(cm)
\(AB=\sqrt{BH\cdot BC}=4\left(cm\right)\)
\(AC=4\sqrt{3}\left(cm\right)\)
\(AH=4\cdot\dfrac{4\sqrt{3}}{8}=2\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A, đường cao AH. Biết BC=8cm, BH=2cm. a) Tính độ dài các đoạn thẳng AB, AC, AH b) Trên cạnh AC lấy điểm K (K khác A, K khác C), gọi D là hình chiếu của A trên BK. Chứng minh BD.BK=BH.BC từ đó suy ra AB = BC. sin góc BDH
a: CH=6cm
AB=4cm
\(AC=4\sqrt{3}\left(cm\right)\)
Cho tam giác ABC cân có AB = AC = 9cm, BC = 12cm, đường cao AH, I là hình chiếu của H trên AC
a) TÍnh độ dài CI
b) Kể đường cao BK của tam giác ABC. Chứng minh rằng điểm K nằm giữa hai điểm C và A
Cho tam giác ABC cân tại A, có AB=AC=9cm, Bc=12cm, đường cao AH, I là hình chiếu của H trên AC
a) Tính độ dài CI
b) Kẻ đường cao BK của tam giác ABC . Chứng minh rằng K nằm giữa 2 điểm C và A
Cho AABC cân tại A, H là hình chiếu của A trên BC, K là hình chiếu của B trên AC. AH, BK cắt nhau tại I. b) Chứng minh AIBC cân, so sánh IB và IK. c) Đường thẳng qua B vuông góc với AB cắt AC tại D. Chứng minh BC là phân giác của góc KBD. d) Lấy M thuộc tia đối của tia KB sao cho BM=BD. Chứng minh C là trực tâm của ABDM và AICM vuông.
b) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔIBH vuông tại H và ΔICH vuông tại H có
BH=CH(cmt)
IH chung
Do đó: ΔIBH=ΔICH(hai cạnh góc vuông)
Suy ra: IB=IC(hai cạnh tương ứng)
Xét ΔIBC có IB=IC(cmt)
nên ΔIBC cân tại I(Định nghĩa tam giác cân)
Ta có: ΔIKC vuông tại K(gt)
nên IC là cạnh lớn nhất(Do IC là cạnh huyền)
hay IK<IC
mà IB=IC(cmt)
nên IK<IB
c) Ta có: ΔKBC vuông tại K(gt)
nên \(\widehat{KBC}+\widehat{KCB}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{KBC}+\widehat{ACB}=90^0\)(1)
Ta có: \(\widehat{DBC}+\widehat{ABC}=\widehat{ABD}\)(tia BC nằm giữa hai tia BA,BD)
nên \(\widehat{DBC}+\widehat{ABC}=90^0\)(2)
Từ (1) và (2) suy ra \(\widehat{KBC}=\widehat{DBC}\)
hay BC là tia phân giác của \(\widehat{KBD}\)(đpcm)
Cho tam giác ABC cân có AB=AC=9cm, BC=12cm, đường cao AH, I là hình chiếu của H trên AC.
a) Tính độ dài CI.
b) Kẻ đường cao BK của tam giác ABC. Chứng minh rằng điểm K nằm giữa hai điểm C và A.
a) Dễ dàng c/m được tam giác HIC đồng dạng với tam giác AHC (g.g)
=> \(\frac{HC}{AC}=\frac{IC}{HC}\Rightarrow IC=\frac{HC^2}{AC}=\frac{\left(\frac{BC}{2}\right)^2}{AC}\) . Bạn thay số vào tính.
b) Dễ dàng c/m được HI là đường trung bình tam giác BKC => I nằm giữa K và C
Lại có I nằm giữa AC => K nằm giữa A và C
a) \(IC=\frac{HC^2}{AC}=\frac{6^2}{9}=4\) (cm)
b) \(\Delta ABC\) cân tại điểm A.
\(\Rightarrow\widehat{B}=\widehat{C}\) là góc nhọn
=> A nằm trên mặt phẳng chứa A bờ BC.
\(\Rightarrow\Delta AHC\approx\Delta BKC\)
\(\Rightarrow\frac{AC}{BC}=\frac{HC}{KC}\)
\(\Rightarrow KC=\frac{12.6}{9}=8< 9\)
Vậy K nằm giữa A và C
1. cho tam giác ABC cân tại A ,có AM là tia phân giác của góc A(M thuộc BC).Kẻ BK vuông góc vs AC cắt AM tại I ( K thuộc AC)
a. Chứng minh CI vuông góc vs AB
b. lấy điểm D bất kí trên cạnh BC, gọi hình chiếu của D trên AB,AC và BK thứ tự là P,Q và H. Chứng minh BK=DP+DQ
a: Xét ΔABC có
AM,BK là đường cao
AM cắt BK tại I
=>I là trực tâm
=>CI vuông góc AB tại N
b:
Xet ΔAKB vuông tại K và ΔANC vuông tại N có
AB=AC
góc KAB chung
=>ΔAKB=ΔANC
=>BK=CN
DP//NC
=>DP/NC=BD/BC
=>DP/BK=BD/BC
DQ//BK
=>DQ/BK=CD/CB
=>DQ+DP=BK(BD/BC+CD/CB)=BK
Cho tam giác ABC cân tại A, 2 đường cao AH và BK. Gọi E là hình chiếu của H trên AC, BE giao AH tại I. AM là đường trung tuyến của tam giác AHE. AM cắt BC và BK lần lượt tại F và N. Hỏi tứ giác FINE là hình gì?
???, bạn ơi, hình như có 2 điểm M, : " AM cắt BC,BK lần lượt tại M và N " ?
Cho tam giác ABC vuông tại A , Đường cao AH .Biết BC = 8cm , BH = 2cm
a, Tính AB , AC, AH
b, Trên AC lấy K ( K khác A và C ) D là hình chiếu của A trên BK . Cm BD.BK = BH.BC
c, CM: S BHD = 1214 . S BKC .Cos22 ABD∠
a, \(HC=BC-BH=6\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=4\left(cm\right)\\AC=\sqrt{CH\cdot BC}=4\sqrt{3}\left(cm\right)\\AH=\sqrt{BH\cdot HC}=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}BD\cdot BK=AB^2\\BH\cdot BC=AB^2\end{matrix}\right.\Rightarrow BD\cdot BK=BH\cdot BC\)