Cho các số dương a,b,c,d t/m a+b+c+d=4. CMR:
1/ab + 1/bc + 1/cd + 1/da >= a2 + b2 + c2 + d2
Cho cac so duong abcd a+b+c+d =4.cm1/ab+1/cd+1/bc+1/da lon hon hoac bang a2+b2+c2+d2
Bài 5:
Cho a,b,c,da,b,c,d là các số thực thỏa mãn {a+b+c+d=0a2+b2+c2+d2=2{a+b+c+d=0a2+b2+c2+d2=2
Tìm GTLN của P=abcd.
Bài 6:
Cho a,b,c≥0a,b,c≥0 thỏa mãn a+b+c=1.a+b+c=1. Tìm giá trị lớn nhất của biểu thức:P=abc(a2+b2+c2)
cho các số dương a b c khác 1 thỏa mãn abc<1 cmr a2 + b2 +c2 -2(ab+bc+ca) > -3
cho a,b,c,d là các số tự nhiên thỏa mãn : đôi 1 khác nhau và a2+d2=b2+c2=t.
chứng minh ab+cd và ac+bd không thể đồng thời là số nguyên tố
Lời giải:
Ta thấy:
$(ab+cd)(ac+bd)=ad(c^2+b^2)+bc(a^2+d^2)$
$=(ad+bc)t$
Mà:
$2(t-ab-cd)=(a-b)^2+(c-d)^2>0$ nên $t> ab+cd$
Tương tự: $t> ac+bd$
Kết hợp $(ab+cd)(ac+bd)=(ad+bc)t$ nên:
$ab+cd> ad+bc, ac+bd> ad+bc$
Nếu $ab+cd, ac+bd$ đều thuộc $P$. Do $ad+bc$ là ước của $ab+cd$ hoặc $ac+bd$. Điều này vô lý
Do đó ta có đpcm.
Chứng minh bất đẳng thức (a + 1)2 ≥ 4a
Chứng minh : (ac + bd)2 + (ad – bc)2 = (a2 + b2)(c2 + d2)
Cho a, b, c là các số dương. Chứng minh : a3 + b3 + abc ≥ ab(a + b + c)
Mn giúp mik vs ;-;
a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)
hay \(\left(a-1\right)^2>=0\)(luôn đúng)
b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)
Cho a, b, c, d thỏa mãn a + b + c + d = 0; ab + ac + bc = 1. Rút gọn biểu thức P = 3(ab − cd)(bc − ad)(ca − bd) (a 2 + 1)(b 2 + 1)(c 2 + 1) ?
A. -1
B. 1
C. 3
D. -3
Cho các số dương a,b,c,d thỏa mãn a+b+c+d=4. CMR: 1/ab + 1/bc + 1/cd + 1/da >= a²+b²+c²+d²
Cho a,b,c,d >0, a+b+c+d=4.cmr: a/(1+b2)+b/(1+c2)+c/(1+d2)+d/(...
Ta có:
a/(1+b²) = a- ab²/(1+b²) ≥ a - ab/2 (do 1+b² ≥ 2b)
Tương tự ta có:
b/(1+c²) ≥ b- bc/2
c/(1+d²) ≥ c - cd/2
d/(1+a²) ≥ d - ad/2
Cộng vế với vế ta được:
VT = a/(1+b²) + b/(1+c²) + c/(1+d²) + d/(1+a²) ≥ (a+b+c+d) - (ab+bc+cd+da)/2
VT ≥ (a+b+c+d -ab+bc+cd+da)/2 + (a+b+c+d)/2
Ta có:
ab+bc+cd+da = (a+c)(b+d) ≤ [(a+b+c+d)/2]² = 4 = a+b+c+d
=> a+b+c+d ≥ ab+bc+cd+da
=> VT ≥ (a+b+c+d)/2 =2
Dấu = khi a=b=c=d=1
Chứng minh rằng :
1) x2+y2+z2≥xy+yz+xz
2) a2+b2+c2+3≥2(a+b+c)
3) a2+b2+c2+d2+e2≥a(b+c+d+e)
4) x2+2y2+2z2>2xy+2yz+2z−2
5) (a2+b2+c2)/3≥4/13với 4x + 9y = 2 ; Dấu "=" xảy ra khi nào?
6) abc≥(a+b−c)(a+c−b)(b+c−a)với a, b, c là 3 cạnh của một tam giác
7) CMR a+b<2cvới a, b, c là 3 số dương thỏa
a^2<bc
và b^2<ac
8) a2/3+b2+c2>ab+bc+acvới abc = 1 và a^3 > 36 |
9) Cho a, b, c là 3 cạnh của một tam giác có chu vi bằng 2
a) CMR Cả a, b và c đều bé hơn 1
b) CMR a2+b2+c2<2(1−abc)
10) bc/a+ac/b+ab/c≥a+b+cvới mọi a, b và c dương
ai trả lời sớm tớ sẽ lập nhiều nick để tick cho nha cảm ơn mọi người trước ( hiên tớ có 6 nick)