Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Ngọc Anh
Xem chi tiết
Đoàn Đức Hà
13 tháng 7 2021 lúc 10:38

Xét tứ giác \(AIDK\)

\(AI//DK,AK//DI\)

Suy ra \(AIDK\)là hình bình hành. 

mà \(AD\)là phân giác trong của góc \(\widehat{IAK}\)nên \(AIDK\)là hình thoi .

Suy ra \(DK=DI\)

do đó tam giác \(IDK\)là tam giác cân. 

Khách vãng lai đã xóa
dream XD
Xem chi tiết
Nguyễn Mai Nhan Ngọc
Xem chi tiết
Flynn
Xem chi tiết
Nguyễn Ngọc Anh Minh
1 tháng 10 2021 lúc 9:46

Xét tư giác AEDF có

DF//AE; DE//AF => AEDF là hình bình hành

Gọi O là giao của AD và EF => IA=ID và IE=IF

Xét tg AEFF có

IE=IF => AI là đường trung tuyến của tg AEF

mà AI là phân giác của \(\widehat{BAC}\)

=> tg AEF cân tại A (tg có đường trung tuyến đồng thời là đường phân giác thì tg đó là tg cân) \(\Rightarrow AD\perp EF\) (trong tg cân đường trung tuyến đồng thời là đường cao)

=> AEDF là hình thoi (Hình bh có hai đường chéo vuông góc nhau là hình thoi

=> EA=ED

Xét tg AEI và tg DEI có

EA=ED

IA=ID

EI chung 

=> tg AEI=tgDEI (c.c.c) \(\Rightarrow\widehat{AEF}=\widehat{DEF}\) => EF là phân giác của \(\widehat{AED}\)

Khách vãng lai đã xóa
Minh nhật
Xem chi tiết
Hung Nguyên kim
12 tháng 12 2021 lúc 20:06

Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE

Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx 

Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC

Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC

=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)

Vậy BD < DC

Nguyễn Mai Phương
Xem chi tiết
Trịnh Yến Chi
20 tháng 7 2017 lúc 20:04
22222222​​233333333
Tịnh Y Cúc
Xem chi tiết
Thịnh
10 tháng 10 2021 lúc 9:45

undefined

ho quang hieu
Xem chi tiết
Ctuu
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 4 2021 lúc 20:24

b) Ta có: \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)(cmt)

nên \(\dfrac{AC}{AB}=\dfrac{DC}{BD}\)(1)

Xét ΔABC có 

D\(\in\)BC(gt)

E\(\in\)AC(gt)

DE//AB(gt)

Do đó: \(\dfrac{EC}{EA}=\dfrac{CD}{DB}\)(Định lí Ta lét)(2)

Từ (1) và (2) suy ra \(\dfrac{AC}{AB}=\dfrac{EC}{AE}\)

hay \(AC\cdot AE=AB\cdot EC\)(đpcm)

Nguyễn Lê Phước Thịnh
17 tháng 4 2021 lúc 20:22

a) Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)

nên \(\dfrac{AB}{BD}=\dfrac{AC}{CD}\)(Tính chất tia phân giác của tam giác)

\(\Leftrightarrow\dfrac{AB}{6}=\dfrac{10}{8}\)

hay AB=7,5(cm)

Vậy: AB=7,5cm