cho △ABC kẻ Đường Thẳng a// BC và cắt hai cạnh AB,AC theo thứ tự tại M và N, chứng Minh △AMN ∼ Δ ABC
Cho tam giác ABC. Kẻ đường thẳng a song song với BC và cắt 2 cạnh AB, AC theo thứ tự tại M, N. Chứng minh tam giác AMN đồng dạng với tam giác ABC
Xét ΔAMN và ΔABC có
góc AMN=góc ABC
góc A chung
=>ΔAMN đồng dạng với ΔABC
Cho tam giác ABC. Kẻ đường thẳng a song song với cạnh BC và cắt hai cạnh AB, AC theo thứ tự tại M và N. Hai tam giác AMN và ABC có các góc và các cạnh tương ứng như thế nào ?
Hai tam giác AMN và ABC có các góc tương ứng bằng nhau:
∠A = ∠A ;
∠M = ∠B; ( hai góc đồng vị)
∠N = ∠C; ( hai góc đồng vị)
- Và có các cạnh tương ứng tỉ lệ với nhau
( theo hệ quả định lí ta- let)
Bài 5.2: Cho tam giác ABC. Kẻ đường thẳng song song với BC cắt hai cạnh AB và AC theo thứ tự tại M và N. Gọi H và K lần lượt là trung điểm của MN và BC. Chứng minh rằng ba điểm A, H, K thẳng hàng
Cho Δ ABC vuông tại A có AB > AC. Lấy M là một điểm tùy ý trên cạnh BC. Qua M kẻ đường thẳng vuông góc với BC và cắt đoạn thẳng AB tại điểm I, cắt đường thẳng AC tại điểm D.
a) Chứng minh: ∆ABC đồng dạng ∆MDC
b) Chứng minh rằng: BI.BA = BM.BC
c) Chứng minh: góc BAM = ICB. Từ đó chứng minh AB là phân giác của góc MAK với K là giao điểm của CI và BD
d) Cho AB = 8cm, AC = 6cm. Khi AM là đường phân giác trong tam giác ABC hãy tính SAMBD
Cho tam giác ABC vuông tại A có góc ABC=60độ.
a)Tính số đo góc ACB và so sánh độ dài hai cạnh AB, AC
b) Gọi M là trung điểm AC. Kẻ đường thẳng vuông góc với AC tại M, đường thẳng này cắt BC tại N, Chứng minh tam giác AMN= tam giác CMN
c)Chứng minh tam giác ABN là tam giác đều
d)Gọi G là giao điểm của AN và BM, Chứng minh BC=6.GN
Cho Δ ABC có AB=AC, M là trung điểm BC
1,Chứng minh Δ AMB = Δ AMC Từ M kẻ ME ⊥ AB (E ∈ AB)
2,MF ⊥ AC (M ∈ AC) Chứng minh AE =AF
3,Chứng minh EF//BC Từ B kẻ đường thẳng ⊥ AB, từ C kẻ đường thẳng ⊥ AC
4, hai đường thẳng này cắt nhau tại N. Chứng minh A,M,N thẳng hàng
a, xét tam giác AMB và tam giác AMC có :
AB=AC (gt)
MB=MC (gt)
AM là cạnh chung
suy ra: tam giác AMB = tam giác AMC (c.c.c)
b,Vì tam giác AMB = tam giác AMC ( câu a)
suy ra : góc B =góc C ( 2 góc tương ứng )
xét tam giác MBE và tam giác MCF có:
M1=M2 ( đối đỉnh )
B =C
MB=MC ( gt)
suy ra :tam giác MBE = tam giác MCF (g.c.g)
vì tam giác MBE = tam giác MCF (chứng minh trên)
ME=MF (2 cạch tương ứng )
xét tam giác AEM và tam giác AFM có :
E1=F1
AM là cạnh chung
ME=MF
suy ra : tam giác AEM = tam giác AFM (c.g.c)
vì tam giác AEM = tam giác AFM ( chứng minh trên)
suy ra :AE=AF
c, gọi điểm cắt nhau của EF và AM
Vì tam giác AMB = tam giác AMC (câu b)
suy ra : góc A1 = góc A2 ( 2 góc tương ứng ); góc M1 = góc M2 ( 2 góc tương ứng)
xét tam giác AEH và tam giác AFH có :
A1=A2
AE=AF
AH là điểm chung
suy ra : tam giác AEH = tam giác AFH (c.g.c)
suy ra góc H1= góc H2 ( 2 góc tương ứng)
mà H1+H2=180 (2 góc kề bù)
suy ra : H1=H2=90
suy ra AM vuông góc với EF
mà M1+M2=180
suy ra M1=M2=90
suy ra AM vuông góc với BC
mà AM vuông góc với EF
suy ra EF song song với BC ( 2 đường thẳng phân biệt cùng vuông góc với đường thẳng thứ 3 thì chúng song song với nhau )
d, Ta có : AMB = NMC ( đối đỉnh )
+) AMB+AMC= 180 ( 2 góc kề bù )
mà AMC=NMC
suy ra AMB+NMC =180 (3)
mà AMB+NMC = AMN (4)
Từ (3),(4) suy ra : 3 điểm A,M,N thẳng hàng
1, xét tam giác AMB và tam giác AMC có:
AB=AC (gt)
MB=MC (gt)
1. Cho tam giác ABC, điểm D thuộc cạnh BC. Qua D kẻ các đường thẳng song song AB và AC chúng cắt AB,AC theo thứ tự ở E và F. Chứng minh hệ thức: AE/AB+AF/AC=1
2. Cho tam giác ABC, 1 đường thẳng song song với BC cắt các cạnh AB, AC theo thứ tự ở D và E. Qua C kẻ đường thẳng song song với EB cắt AB ở F. Chứng minh hệ thức AB2=AD*AF
3.Cho tam giác ABC( AB<AC) đường phân giác AD. Qua trung điểm M của BC kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. Chứng minh rằng:
a. AE=AK
b. DK=CE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường
vuông góc kẻ từ H đến AB, AC.
1) Chứng minh: AH = DE
2) Từ D và E lần lượt kẻ các đường thẳng vuông góc với DE, hai đường thẳng này cắt cạnh BC
lần lượt tại M và N. Chứng minh M và N lần lượt là trung điểm của BH và HC.
1: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
=>AH=DE
2: \(\widehat{EDM}=90^0\)
=>\(\widehat{EDH}+\widehat{MDH}=90^0\)
=>\(\widehat{EAH}+\widehat{MDH}=90^0\)
=>\(\widehat{MDH}+\widehat{HAC}=90^0\)
=>\(\widehat{MDH}+\widehat{ABC}=90^0\)
mà \(\widehat{MHD}+\widehat{MBD}=90^0\)
nên \(\widehat{MDH}=\widehat{MHD}\)
=>MD=MH
\(\widehat{MDH}+\widehat{MDB}=\widehat{HDB}=90^0\)
\(\widehat{MHD}+\widehat{MBD}=90^0\)(ΔHDB vuông tại D)
mà \(\widehat{MDH}=\widehat{MHD}\)
nên \(\widehat{MDB}=\widehat{MBD}\)
=>MD=MB
=>MB=MH
=>M là trung điểm của BH
\(\widehat{NED}=90^0\)
=>\(\widehat{NEH}+\widehat{DEH}=90^0\)
=>\(\widehat{NEH}+\widehat{DAH}=90^0\)
mà \(\widehat{DAH}=\widehat{C}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{NEH}+\widehat{C}=90^0\)
mà \(\widehat{NHE}+\widehat{C}=90^0\)(ΔHEC vuông tại E)
nên \(\widehat{NEH}=\widehat{NHE}\)
=>NE=NH
\(\widehat{NEH}+\widehat{NEC}=\widehat{CEH}=90^0\)
\(\widehat{NHE}+\widehat{NCE}=90^0\)(ΔCEH vuông tại E)
mà \(\widehat{NHE}=\widehat{NEH}\)
nên \(\widehat{NEC}=\widehat{NCE}\)
=>NE=NC
mà NH=NE
nên NC=NH
=>N là trung điểm của HC
Cho ABC, trên cạnh AB lấy các điểm D và E. Sao cho AD = BE. Qua D và E vẽ các đường song song với BC, chúng cắt AC theo thứ tự ở M và N. Từ N, kẻ đường thẳng song song với AB, cắt BC tại I.
a) Chứng minh ADM = NIC
b) Chứng minh rằng DM + EN = BC