Bài 1. Cho (P)y=x^2/4 và đthg y=mx+n. Xác định các hệ số m,n để đthg đi qua điểm A(-1,-2) và tiếp xúc vs Parabol
Cho parabol: \(y=\dfrac{-x^2}{4}\) và đường thẳng y=mx+n. Xác định các hệ số m và n để đường thẳng đi qua điểm (1;2) và tiếp xúc với parabol. Tìm tọa độ tiếp điểm, vẽ đồ thị của parabol và đường thẳng trên cùng 1 hệ trục tọa độ
Phương trình hoành độ giao điểm là:
\(-\dfrac{1}{4}x^2-mx-n=0\)
THeo đề, ta có:
\(\left\{{}\begin{matrix}m+n=2\\\left(-m\right)^2-4\cdot\left(-\dfrac{1}{4}\right)\cdot\left(-n\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\m^2-n=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=2-n\\n^2-4n+4-n=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n\in\left\{1;4\right\}\\m\in\left\{1;-2\right\}\end{matrix}\right.\)
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n. Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
Bài tập 1 Cho (P) y=x^2 và đthg (D)y=-x+2
a,Tìm tọa độ giao điểm của (P) và (D)
b, Viết pt đthg (D)biết (D)song song với (D) và cắt (P)tại điểm có hoành độ -1
Bài tập 2 Cho hs y=-3x+b .Hãy xác định b nếu :
a,Đths cắt trục tung tại 3
b, Đths cắt đths y=6x+5 tại 1 điểm nằm trên trục tung
c, Đồ thị tiếp xúc hs tiếp xúc parabol y=x^2
MÌNH CẦN GẤP NHA ! CẢM ƠN Ạ!
cho parabol (P): \(y=\dfrac{1}{4}x^{2}\) và đường thẳng (d): y=mx+n. Tìm giá trị của m,n để (d) đi qua điểm A(-1;-2) và tiếp xúc với (P)
Lời giải:
Để $(d)$ đi qua $A(-1;-2)$ thì: $-2=-m+n(1)$
Để $(d)$ và $(P)$ tiếp xúc nhau thì PT hoành độ giao điểm:
$\frac{1}{4}x^2-mx-n=0$ có nghiệm duy nhất
Điều này xảy ra khi:
$\Delta=m^2+n=0(2)$
Từ $(1);(2)\Rightarrow m=1$ hoặc $m=-2$
Nếu $m=1$ thì $n=-1$
Nếu $m=-2$ thì $n=-4$
Vậy............
Trên hệ trục tọa độ Oxy cho các điểm M(2;1) và N(5;-1/2) và đthg (d) có ptr y= ax+b
a, Tìm a và b để đthg (d) đi qua các điểm M và N
b, Xác định tọa độ giao điểm của đường thẳng MN với các trục ox và Oy
Bài 10: Trong hệ toạ độ xOy cho Parabol (P) y = \(-\dfrac{x^2}{4}\) và đường thẳng (d): y= mx-2m-1
1. Vẽ (P)
2. Tìm m sao cho (P) và (d) tiếp xúc nhau.Tìm toạ độ tiếp điểm
3. Chứng tỏ rằng (d) luôn đi qua một điểm cố định
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n. Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
Để d đi qua A
\(\Leftrightarrow m.1+n=0\Rightarrow n=-m\Rightarrow y=mx-m\)
Phương trình hoành độ giao điểm (P) và d:
\(\frac{1}{2}x^2=mx-m\Leftrightarrow x^2-2mx+2m=0\) (1)
Để d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\Rightarrow n=0\\m=2\Rightarrow n=-2\end{matrix}\right.\)
- Với \(m=n=0\Rightarrow x^2=0\Rightarrow x=0\Rightarrow y=0\)
Tọa độ tiếp điểm là \(\left(0;0\right)\)
- Với \(\left[{}\begin{matrix}m=2\\n=-2\end{matrix}\right.\) \(\Rightarrow x^2-4x+4=0\Rightarrow x=2\Rightarrow y=2\)
Tọa độ tiếp điểm là \(\left(2;2\right)\)
Cho parabol \(y=\frac{1}{2}x^2\) và đường thẳng (d) y = mx + n.
Xác định các hệ số m và n để đường thẳng d đi qua điểm A(1; 0) và tiếp xúc với Parabol. Tìm tọa độ của tiếp điểm?
Bài 15: Cho (P): \(y=2x^2\)
1. Vẽ (P)
2. Trên (P) lấy điểm A có hoành độ x = 1 và điểm B có hoành độ x = 2 . Xác định các giá trị của m và n để đường thẳng (d): y = mx + n tiếp xúc với (P) và song song với AB
1.
Đồ thị hàm số:
2.
\(x=1\Rightarrow y=2\Rightarrow A\left(1;2\right)\)
\(x=2\Rightarrow y=8\Rightarrow B\left(2;8\right)\)
Phương trình đường thẳng AB:
\(6x-y-4=0\)
Vì \(\left(d\right)//\left(AB\right)\Rightarrow m=6\Rightarrow6x-y+n=0\left(AB\right)\)
Theo giả thiết \(\left(d\right)\) tiếp xúc với \(\left(P\right)\), phương trình hoành độ giao điểm:
\(6x+n=2x^2\)
\(\Leftrightarrow2x^2-6x-n=0\)
\(\Delta'=9+2n=0\Leftrightarrow n=-\dfrac{9}{2}\)