1.
Đồ thị hàm số:
2.
\(x=1\Rightarrow y=2\Rightarrow A\left(1;2\right)\)
\(x=2\Rightarrow y=8\Rightarrow B\left(2;8\right)\)
Phương trình đường thẳng AB:
\(6x-y-4=0\)
Vì \(\left(d\right)//\left(AB\right)\Rightarrow m=6\Rightarrow6x-y+n=0\left(AB\right)\)
Theo giả thiết \(\left(d\right)\) tiếp xúc với \(\left(P\right)\), phương trình hoành độ giao điểm:
\(6x+n=2x^2\)
\(\Leftrightarrow2x^2-6x-n=0\)
\(\Delta'=9+2n=0\Leftrightarrow n=-\dfrac{9}{2}\)