Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mạnh Tuấn
Xem chi tiết

Để chứng minh phân số tối giản, ta đặt ƯCLN của tử số và mẫu số là d

Từ đề bài ta có :  \(2n+2⋮d\) và \(2n+1⋮d\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Leftrightarrow\left(2n+2-2n-1\right)⋮d\)

\(\Leftrightarrow\left(2n-2n\right)+\left(2-1\right)⋮d\Leftrightarrow\left(0+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vì ƯCLN của tử số và mẫu số là 1 nên hai số nguyên tố cùng nhau.

Hay \(\frac{2n+2}{2n+1}\) là phân số tối giản

Khách vãng lai đã xóa
đinh tuấn khang
Xem chi tiết
Quân Trẩn Trọng
Xem chi tiết
Senju Kawaragi
Xem chi tiết
Senju Kawaragi
28 tháng 2 2022 lúc 21:16

cíu batngo

Nguyễn Lê Phước Thịnh
28 tháng 2 2022 lúc 21:24

Gọi d=UCLN(2n+1;3n+2)

\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+2\right)⋮d\)

\(\Leftrightarrow-1⋮d\)

=>d=1

=>UCLN(2n+1;3n+2)=1

=>2n+1/3n+2 là phân số tối giản

Nguyen Minh Ha
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 11 2023 lúc 8:40

Gọi d=ƯCLN(2n+3;4n+8)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\2n+3⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4n+8⋮d\\4n+6⋮d\end{matrix}\right.\Leftrightarrow4n+8-4n-6⋮d\)

=>\(2⋮d\)

mà 2n+3 lẻ

nên d=1

=>ƯCLN(2n+3;4n+8)=1

=>\(P=\dfrac{2n+3}{4n+8}\) là phân số tối giản với mọi n<>-2

Đức Phạm
Xem chi tiết
Thanh Tùng DZ
8 tháng 6 2017 lúc 8:39

gọi ( n3 + 2n ; n4 + 3n2 + 1 ) = d

\(\Leftrightarrow\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}n^4+2n^2⋮d\\n^4+3n^2+1⋮d\end{cases}\Leftrightarrow n^2+1⋮d}\)

Mà n4 + 3n2 + 1 \(⋮\)d

= n4 + 2n2 + n2 + 1

= ( n4 + 2n2 + 1 ) + n2 

= ( n2 + 1 ) 2 + n2 \(⋮\)d

\(\Rightarrow\)n2 \(⋮\)d

\(\Leftrightarrow\)\(⋮\)d

tth_new
8 tháng 6 2017 lúc 8:33

Tham khảo nha bạn! Mình không có thời gian!

Link:

tth 

Đs

tth_new
8 tháng 6 2017 lúc 8:53

Gọi a là ước chung của n^3 +2n và n^4 + 3n^2 + 1

n^3 + 2n chia hết cho a => n(n^3 + 2n) chia hết cho a = > n^4 + 2n^2 chia hết cho a (1)

n^4 + 3n^2 + 1 - (n^4 + 2n^2 )= n^2 +1 chia hết cho a = > (n^2 + 1) ^ 2 = n^4 + 2n^2 + 1  chia hết cho d (2)

Từ (1) và (2), suy ra:

(n^4 + 2n^2 + 1) - (n^4 + 2n ^2 ) chia hết cho a = > 1 chia hết cho a = > a = + - 1

Vậy phân số trên tối giản vì mẫu tử có ước chung là n + 1

Trần Nhật Minh Anh
Xem chi tiết
Nguyễn Bảo Ngọc
Xem chi tiết
Trần Tuyết Nhi
21 tháng 2 2017 lúc 20:52

Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có

3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d

=> d = -1 hoặc 1, do đó n - 5 và 3n - 14  là nguyên tố cùng nhau

vậy n - 5/3n - 14 là phân số tối giản

Trần Thị Bưởi
21 tháng 2 2017 lúc 21:03

123456789q

nguyễn ngọc linh
Xem chi tiết
Akai Haruma
5 tháng 2 lúc 23:28

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

Akai Haruma
5 tháng 2 lúc 23:32

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.