Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 20:43

TXĐ: D=R

Linh Nguyễn
22 tháng 10 2021 lúc 21:20

giải giúp mình kĩ hơn đc ko

 

Linh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 20:15

ĐKXĐ:

\(x^4-2x^2+3\ne0\)

\(\Leftrightarrow\left(x^2-1\right)^2+2\ne0\) (luôn đúng)

Hàm xác định trên R hay \(D=R\)

nguyen ngoc son
Xem chi tiết
2611
2 tháng 10 2023 lúc 22:57

Có: `-1 <= sin x <= 1`

`<=>-2 <= sin x-1 <= 0=>sin x-1 <= 0`

Để hàm số đã cho xác định `<=>sin x-1 >= 0`    Mà `sin x - 1 <= 0`

         `=>sin x -1=0<=>x=\pi/2+k2\pi`   `(k in ZZ)`

  `=>TXĐ: D=\pi/2 +k2\pi`   `(k in ZZ)`.

Linh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 18:51

ĐKXĐ: 

\(x^3+1\ne0\Leftrightarrow x\ne-1\)

\(\Rightarrow D=R\backslash\left\{-1\right\}\)

Linh Nguyễn
22 tháng 10 2021 lúc 19:32

ai đó giải giúp tớ đi gấp lắm

nguyen ngoc son
Xem chi tiết
2611
2 tháng 10 2023 lúc 22:57

Ta có:

`@-1 <= sin x <= 1`

  `<=>0 <= 1+sin x <= 2=>1+sin x >= 0`

`@-1 <= cos x <= 1`

`<=>1 >= -cos x >= -1`

`<=>2 >= 1-cos x >= 0=>1-cos x >= 0`

Hàm số xác định `<=>[1+sin x]/[1-cos x] >= 0`

     `<=>{(1+sin x >= 0(L Đ)),(1-cos x > 0):}<=>1-cos x ne 0<=>x ne k2\pi (k in ZZ)`

   `=>TXĐ: D=R\\{k2\pi| k in ZZ}`.

Linh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 18:52

ĐKXĐ: \(x^2-x+1\ne0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ne0\) (luôn đúng)

Hàm số xác định với mọi x hay \(D=R\)

Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 21:00

TXĐ: D=(1;+\(\infty\))

nguyễn thị hương giang
22 tháng 10 2021 lúc 21:12

Hàm số xác định: \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\x-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x>1\end{matrix}\right.\) \(\Rightarrow x>1\)

Vậy \(D=\left(1;+\infty\right)\)

Haruto Hime
Xem chi tiết
Hồng Phúc
8 tháng 9 2021 lúc 15:56

ĐK: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\sin^4x-cos^4x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{\pi}{4}\ne k\pi\\\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\cos2x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\2x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Linh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 20:07

ĐKXĐ:

\(\left(1-x\right)\left(x^2-4x+3\right)\ne0\)

\(\Leftrightarrow-\left(x-1\right)^2\left(x-3\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

Hay \(D=R\backslash\left\{1;3\right\}\)