Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 21:00

TXĐ: D=(1;+\(\infty\))

nguyễn thị hương giang
22 tháng 10 2021 lúc 21:12

Hàm số xác định: \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ne0\\x-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne-1\\x>1\end{matrix}\right.\) \(\Rightarrow x>1\)

Vậy \(D=\left(1;+\infty\right)\)

Linh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 20:07

ĐKXĐ:

\(\left(1-x\right)\left(x^2-4x+3\right)\ne0\)

\(\Leftrightarrow-\left(x-1\right)^2\left(x-3\right)\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne3\end{matrix}\right.\)

Hay \(D=R\backslash\left\{1;3\right\}\)

Linh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 21:41

TXĐ: D=R

Haruto Hime
Xem chi tiết
Hồng Phúc
8 tháng 9 2021 lúc 15:56

ĐK: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\sin^4x-cos^4x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{\pi}{4}\ne k\pi\\\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\cos2x\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\2x\ne\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{\pi}{4}+k\pi\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Linh Nguyễn
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 10 2021 lúc 20:15

ĐKXĐ:

\(x^4-2x^2+3\ne0\)

\(\Leftrightarrow\left(x^2-1\right)^2+2\ne0\) (luôn đúng)

Hàm xác định trên R hay \(D=R\)

nguyen ngoc son
Xem chi tiết
2611
2 tháng 10 2023 lúc 22:57

Có: `-1 <= sin x <= 1`

`<=>-2 <= sin x-1 <= 0=>sin x-1 <= 0`

Để hàm số đã cho xác định `<=>sin x-1 >= 0`    Mà `sin x - 1 <= 0`

         `=>sin x -1=0<=>x=\pi/2+k2\pi`   `(k in ZZ)`

  `=>TXĐ: D=\pi/2 +k2\pi`   `(k in ZZ)`.

lê phương thảo
Xem chi tiết
anbe
11 tháng 8 2021 lúc 21:53

D={\(\forall\)x\(\in R,x\ne1,x\ne4\) }

anbe
11 tháng 8 2021 lúc 21:56

sorry lộn nha ,câu dưới sai nha

Tập xác định hàm số là :\(\left(0;+\infty\right)\) /{4}

nguyen ngoc son
Xem chi tiết
2611
2 tháng 10 2023 lúc 22:57

Ta có:

`@-1 <= sin x <= 1`

  `<=>0 <= 1+sin x <= 2=>1+sin x >= 0`

`@-1 <= cos x <= 1`

`<=>1 >= -cos x >= -1`

`<=>2 >= 1-cos x >= 0=>1-cos x >= 0`

Hàm số xác định `<=>[1+sin x]/[1-cos x] >= 0`

     `<=>{(1+sin x >= 0(L Đ)),(1-cos x > 0):}<=>1-cos x ne 0<=>x ne k2\pi (k in ZZ)`

   `=>TXĐ: D=R\\{k2\pi| k in ZZ}`.

Truong Dung
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:46

d.

ĐKXĐ: \(x\left|x\right|-4>0\)

\(\Leftrightarrow x\left|x\right|>4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)

e.

ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)

Ta có:

\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:49

f.

ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)

Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)

Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)

Kết hợp với \(x\ge-2\Rightarrow x>-2\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:51

g.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\left|x\right|+4\ge0\end{matrix}\right.\)

Xét \(x\left|x\right|+4\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4\ge0\left(luôn-đúng\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\\left\{{}\begin{matrix}x< 0\\-2\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\-2\le x< 0\end{matrix}\right.\)

\(\Leftrightarrow x\ge-2\)

Kết hợp \(x\ne0\Rightarrow\left[{}\begin{matrix}-2\le x< 0\\x>0\end{matrix}\right.\)