Cho biểu thức P = x2 - 4x +4 phần 3x - 6:
a) Tìm điều kiện của biến x để giá trị của biểu thức P xác định.
b) Rút gọn P.
c) Tính giá trị của biểu thức P khi x = 2006
Cho A= x-9/3+√x ( lưu ý / là phân số) a) Tìm giá trị của x để biểu thức A có nghĩa b) Rút gọn A c) tính giá trị biểu thức A khi x=0;x=-1;x=16 d) Tìm x nguyên để A nguyên
\(A=\dfrac{x-9}{3+\sqrt{x}}\) (đề như này pk?)
a) Để A có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\3+\sqrt{x}\ne0\left(lđ\right)\end{matrix}\right.\)\(\Rightarrow x\ge0\)
b) \(A=\dfrac{x-9}{3+\sqrt{x}}=\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{3+\sqrt{x}}=\sqrt{x}-3\)
c) Với x=0 (tmđk) thay vào A ta được: \(A=\sqrt{0}-3=-3\)
Với x=-1 (ktm đk)
Với x=16 (tmđk) thay vào A ta được: \(A=\sqrt{16}-3=1\)
d) \(A\in Z\Leftrightarrow\sqrt{x}-3\in Z\Leftrightarrow\sqrt{x}\in Z\) \(\Leftrightarrow\) x là số chính phương
Cho biểu thức: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
Với x≠±2,x≠0,x≠3
a, Rút gọn biểu thức A
b,Tính giá trị của A khi x=12
c, Tính x khi A=1
d, Tìm x∈Z để A nguyên
e, Tìm x để biểu thức A>4
Lời giải:
a.
\(A=\left[\frac{(2+x)^2}{(2-x)(2+x)}+\frac{4x^2}{(2-x)(2+x)}-\frac{(2-x)^2}{(2-x)(2+x)}\right]:\frac{x(x-3)}{x^2(2-x)}\)
\(=\frac{(2+x)^2+4x^2-(2-x)^2}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x^2}{x-3}\)
b.
Khi $x=12$ thì $A=\frac{4.12^2}{12-3}=64$
c.
$A=1\Leftrightarrow \frac{4x^2}{x-3}=1$
$\Leftrightarrow 4x^2=x-3$
$\Leftrightarrow 4x^2-x+3=0$
$\Leftrightarrow (2x-\frac{1}{4})^2=-\frac{47}{16}< 0$ (vô lý)
Vậy không tồn tại $x$
d. Để $A$ nguyên thì $\frac{4x^2}{x-3}$ nguyên
$\Leftrightarrow 4x^2\vdots x-3$
$\Leftrightarrow 4(x^2-9)+36\vdots x-3$
$\Leftrightarrow 36\vdots x-3$
$\Leftrightarrow x-3\in\left\{\pm 1;\pm 2;\pm 3;\pm 4;\pm 9; \pm 12; \pm 36\right\}$
Đến đây bạn có thể tự tìm $x$ được rồi, chú ý ĐKXĐ để loại ra những giá trị không thỏa mãn.
e.
$A>4\Leftrightarrow \frac{4x^2}{x-3}>4$
$\Leftrightarrow \frac{x^2}{x-3}>1$
$\Leftrightarrow \frac{x^2-x+3}{x-3}>0$
$\Leftrightarrow x-3>0$ (do $x^2-x+3>0$ với mọi $x$ thuộc ĐKXĐ)
$\Leftrightarrow x>3$. Kết hợp với đkxđ suy ra $x>3$
Cho biểu thức: B=\(\left[\dfrac{x+1}{2x-2}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right].\dfrac{4x^2-4}{5}\)
a, Tìm điều kiện của x để giá trị của biểu thức được xác định
b, Chứng minh rằng: Khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị
a, ĐKXĐ: \(x\ne1;x\ne-1\)
b, Với \(x\ne1;x\ne-1\)
\(B=\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\left[\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =\dfrac{5}{x^2-1}\cdot\dfrac{4\left(x^2-1\right)}{5}\\ =4\)
=> ĐPCM
cho biểu thức C=\(\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)
a, Tìm giá trị của x để giá trị của biểu thức C được xác định
b, Tìm x để C=0
c, Tìm giá trị nguyên của x để C nhận giá trị dương
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
cho biểu thức \(A=33×3+720:\left(x-6\right)\)
Tìm giá trị của x khi \(A=139\)
Tìm giá trị số tự nhiên của x để biểu thức A có giá trị lớn nhất, giá trị lớn nhất là bao nhiêu?
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
Cho biểu thức A=4,25*(a+41,53)-125
1)Tính giá trị biểu thức A khi a=58,47
2)Tìm giá trị của a để A=53,5
a) \(A=4,25.\left(58,47+41,53\right)-125=4,25.100-125=425-125=300\)
b) \(4,25.\left(a+41,53\right)-125=53,5\)
\(\Leftrightarrow4,25.\left(a+41,53\right)=178,5\)
\(\Leftrightarrow a+41,53=42\Rightarrow a=0,47\)
ko hiểu hỏi mik nka , t-i-c-k mik nka
Cho biểu thức : A=4,25*(a+41,53)-125a.Tính giá trị của biểu thức A,khi a = 58,47b.Tìm giá trị của a để A =53,5
1) Thay vào biểu thức ta có:
A=4,25x(58,47+41,53)-125
=> A=4,25x100-125
=> A=425-125
=> A= 300
2) Thay vào biểu thức ta có:
53,5=4,25x(a+41,53)-125
=> 4,25x(a+41,53)=53,5+125
=> a+41,53=178,5:4,25
=> a=42-41,53
=> a=0,47
Tìm các giá trị của biến số x để biểu thức sau có giá trị nguyên:
\(\frac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
1. Tìm các giá trị nguyên của x để biểu thức sau có giá trị lớn nhất:
a.A=\(\frac{2}{5-x}\) b. B=\(\frac{19-2x}{9-x}\)
2. Cho hai biểu thức: A=\(\frac{4x-7}{x-2}\); B=\(\frac{3x-9x+2}{x-3}\). Tìm các giá trị nguyên của x để cả hai biểu thức cùng có giá trị nguyên.
Cho biểu thức: A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right):\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết |x|=\(\dfrac{1}{2}\)
c, Tìm giá trị của x để A<0
Cho biểu thức: A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
a, Rút gọn biểu thức A
b, Tính giá trị biểu thức A tại x, biết |x|=\(\dfrac{1}{2}\)
c, Tìm giá trị của x để A<0
a, ĐKXĐ: x≠±2
A=\(\left(\dfrac{x}{x^2-4}+\dfrac{2}{2-x}+\dfrac{1}{x+2}\right)\left(x-2+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{x}{x^2-4}-\dfrac{2x+4}{x^2-4}+\dfrac{x-2}{x^2-4}\right)\left(\dfrac{x^2+2x}{x+2}-\dfrac{2x+4}{x+2}+\dfrac{10-x^2}{x+2}\right)\)
A=\(\left(\dfrac{-6}{x^2-4}\right)\left(\dfrac{6}{x+2}\right)\)
A=\(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\)
b, |x|=\(\dfrac{1}{2}\)
TH1z: x≥0 ⇔ x=\(\dfrac{1}{2}\) (TMĐKXĐ)
TH2: x<0 ⇔ x=\(\dfrac{-1}{2}\) (TMĐXĐ)
Thay \(\dfrac{1}{2}\), \(\dfrac{-1}{2}\) vào A ta có:
\(\dfrac{-36}{\left(\dfrac{1}{2}-2\right)\left(\dfrac{1}{2}+2\right)^2}\)=\(\dfrac{96}{25}\)
\(\dfrac{-36}{\left(\dfrac{-1}{2}-2\right)\left(\dfrac{-1}{2}+2\right)^2}\)=\(\dfrac{32}{5}\)
c, A<0 ⇔ \(\dfrac{-36}{\left(x-2\right)\left(x+2\right)^2}\) ⇔ (x-2)(x+2)2 < 0
⇔ {x-2>0 ⇔ {x>2
[ [
{x+2<0 {x<2
⇔ {x-2<0 ⇔ {x<2
[ [
{x+2>0 {x>2
⇔ x<2
Vậy x<2 (trừ -2)