Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thư Đỗ Ngọc Anh
Xem chi tiết
Minh Hiếu
28 tháng 12 2021 lúc 20:44

\(B=3+3^2+3^3+3^4+...+3^{2009}+3^{2010}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4.\left(3+3^3+...+3^{2009}\right)\)

⇒ \(B\) ⋮ 4

Nguyễn Lê Phước Thịnh
29 tháng 12 2021 lúc 22:00

b: \(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)=31\cdot\left(5+...+5^{2008}\right)⋮31\)

Hong Ngoc
Xem chi tiết
Lê Thị Thu Hương
Xem chi tiết
subjects
28 tháng 12 2022 lúc 10:41

loading...

baek huyn
Xem chi tiết
Võ Đông Anh Tuấn
3 tháng 7 2016 lúc 17:35

 53! - 51! = 51! x (52 x 53) - 51! (phân tích số 53! thành 51! x 52 x 53) 
= 51! x (2756 -1) 
= 51! x 2755 
2755 chia hết cho 29 nên suy ra 53! - 51! chia hết cho 29

Le Thi Khanh Huyen
3 tháng 7 2016 lúc 17:35

 53! - 51!

= 1.2.3...28.29....53 - 1.2.3...28.29...51

=29 . ( 1.2.3...28.30.31...53 - 1.2.3...28.30.31...51) chia hết cho 29.

Le Thi Khanh Huyen
3 tháng 7 2016 lúc 17:36

2275 không chia hết cho 29 nha Nguyễn Thiện Nhân

Trần Nguyễn Xuân Phát
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Lê Văn Trường
25 tháng 12 2021 lúc 20:18

đúng rùi

Khách vãng lai đã xóa
luongngocha
Xem chi tiết
Phạm Ngọc Thạch
6 tháng 7 2015 lúc 10:17

a) => 5^5 - 5^4 + 5^3 = 5^3(5^2 - 5+1) = 5^3(25-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7

b) 81^7 - 27^9 - 9^13 = 3^28 - 3^27 - 3^26 = 3^26(3^2 - 3 - 1)= 3^26 x 5 = 3^24 x 45 chia hết cho 45

c) 16^5 + 2^15 = 2^20 + 2^15 = 2^15 (2^5 + 1) = 2^15 x 33 chia hết cho 33

d) = 51! x 52 x 53 - 51! = 51! x (52 x 53 - 1) = 51! x 2755. Vì 51! chia hết cho 45 nên 51! x 2755 chia hết cho 45

KAI MASTER OF FIRE
6 tháng 7 2015 lúc 10:23

\(a,5.\left(5^2-5+1\right)=5.\left(25-5+1\right)=5.21=5.7.3\)

vì tích trên có chứa thừa số 7 nên tích đó chia hết cho 7

\(b,3^{28}-3^{27}-3^{26}=3^{24}.\left(3^4-3^3-3^2\right)=3^{24}.45\)

vì tích trên có chứa thừa số 45 nên tích đó chia hết cho 45

Tuấn Anh goku
6 tháng 12 2016 lúc 12:55

Ứ biết

Bùi Quỳnh Như
Xem chi tiết
Trần Thị Hoài Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2022 lúc 22:16

a: \(B=3^1+3^2+...+3^{2010}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2008}\right)⋮13\)

b: \(C=5^1+5^2+...+5^{2010}\)

\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+...+5^{2008}\right)⋮31\)

c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{2008}\right)⋮57\)

Phạm Minh Hiền Tạ
Xem chi tiết
Mysterious Person
9 tháng 8 2018 lúc 22:25

+) ta có : \(B=2+2^2+2^3+2^4+...+2^{100}\)

\(\Leftrightarrow B=\left(2+2^2+...+2^5\right)+\left(2^6+2^7+...+2^{10}\right)...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(\Leftrightarrow B=2\left(1+2+...+2^4\right)+2^6\left(1+2+...+2^4\right)+...+2^{96}\left(1+2+...+2^4\right)\)

\(\Leftrightarrow B=2\left(31\right)+2^6\left(31\right)+...+2^{96}\left(31\right)=31\left(2+2^6+...+2^{96}\right)⋮31\left(đpcm\right)\)

+) ta có : \(C=53!-51!=53.52.51!-51!=51!\left(53.52-1\right)\)

\(\Leftrightarrow C=51!\left(2755\right)=29.95.51!⋮29\left(đpcm\right)\)