x^2+5y^2+2x+6y+34
chứng minh các biểu thức sau không âm với mọi x, y
x2 - 8x + 20
x2 + 5y2 + 2x + 6y + 34
x2 - 8x + 20
= x2 - 8x + 20
= ( x2 - 8x + 16 ) + 4
= ( x - 4 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
x2 + 5y2 + 2x + 6y + 34
x2 + 5y2 + 2x + 6y + 34
= ( x2 + 2x + 1 ) + ( 5y2 + 6y + 9/5 ) + 156/5
= ( x + 1 )2 + 5( y2 + 6/5y + 9/25 ) + 156/5
= ( x + 1 )2 + 5( y + 3/5 )2 + 156/5 ≥ 156/5 > 0 ∀ x, y ( đpcm )
Tìm số nguyên dương x,y biết:
a) \(x^2+5y^2+2x-4xy-10y-9=0\)
b) \(5x^2+5y^2+8xy+2+2y-2x=0\)
c) \(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
d) \(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
a/
\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)
\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)
Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm
b/
\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)
Pt vô nghiệm
c/
\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Do x;y;z nguyên dương nên vế phái luôn dương
Pt vô nghiệm
Cm các biểu thức sau ko âm voiứ mọi x, y :
a> x^2+ 5y^2+2x+6y+34
b> 5x^2+10y^2-6xy-4x-2y+9
c> 5x^2+y^2-4xy-2y+8x+2013
Chứng minh các biểu thức sau không âm. ( Luôn dương )
a) x^2-8x+20
b) x^2+11
c) 4x^2-12x+11
d) x^2+5y^2+2x+6y+34
g) (15-1)^2+3.(7x+3).(x+1)-(x^2-73)
f) x^2-2x+y^2+4y+6
a) \(x^2-8x+20\)
\(=x^2-2.x.4+16+4\)
\(=\left(x-4\right)^2+4\)
Có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+4>0\)
Hay:.............
b) \(x^2+11\)
Có: \(x^2\ge0\Rightarrow x^2+11>0\)
Hay:.............
c) \(4x^2-12x+11\)
\(=4\left(x^2-3x+\frac{11}{4}\right)\)
\(=4\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}+\frac{1}{2}\right)\)
\(=4\left(x-\frac{3}{2}\right)^2+2>0\)
d) \(x^2+5y^2+2x+6y+34\)
\(=x^2+2.x.1+1+y^2+4y^2+2.y.3+9+24\)
\(=\left(x^2+2.x.1+1\right)+\left(y^2+2.y.3+9\right)+4y^2+24\)
\(=\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24\)
Ta có: \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(y+3\right)^2\ge0\\\left(2y\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2+\left(2y\right)^2+24>0\)
f) \(x^2-2x+y^2+4y+6\)
\(=x^2-2.x.1+1+y^2+2.y.2+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\)
Cho 2x^2 +5y^2+4xy-6y+3=0.Hãy tính B=2021*(x+y)^4+2022*(x+2)^6
Bài 1: Thực hiện phép tính
1, (3y +1/3y^4)^2
2, (-3x^2 -1/2x)^2
3, (x^2 +2x -3)^2
4, 3 (x+3) (x-3) - (x-9)^2
5, (x^n +x^n:1)^2
6, (5x-3y)^2 - (5x +3y)^2
7, (3x -x^2 +5)^2
8, (-2x +5y)^3
9, (1/3x^2 -5y^3)^3
10,(m^2n^3+n^2m^3) (m^2n^3 - n^2m^3)
11, (7x+6y)^2 - (7x +6y) (7x -6y)
12, (x-y)^2 +(y+x)^2 - (2x -y)^z
13, (a-b)^3 + (a+b)^3
14, (a-b)^3 -(a-b)^3
15, (3x-5y)^4 - (3x +5y)^4
Mọi người làm giúp mình vs
Cho 2x² + 5y² + 4xy - 6y + 3 = 0. Hãy tính B = 2021(x+y)³ - 2022(x+2)³
Thực hiện phép tính:
a) (x - 6y)(2x + 5y) + 2x(15x + y).
b) (x -5)² + 2(x - 2)(x + 2).
c) (x + 2)(x² - 2x + 4) - (x³ - 5).
d) (x -1)(x² - x + 1) + (x - 1)(x+ 1).
\(a,=2x^2-7xy-30y^2+30x^2+2xy=32x^2-5xy-30y^2\\ b,=x^2-10x+25+2x^2-8=3x^2-10x+17\\ c,=x^3+8-x^3+5=13\\ d,=x^3-x^2+x-x^2+x-1+x^2-1=x^3-x^2+2x-2\)
CMR: f(x,y)=\(x^2+5y^2-4xy+2x-6y+3>0\)
\(f\left(x,y\right)=\left(x^2+4y^2-4xy\right)+\left(2x-4y\right)+1+\left(y^2-2y+1\right)+1\)
\(f\left(x,y\right)=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-1\right)^2+1\)
\(f\left(x,y\right)=\left(x-2y+1\right)^2+\left(y-1\right)^2+1\)
\(\left\{{}\begin{matrix}\left(x-2y+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{matrix}\right.\)=> f(x;y) >=1 >0 => dpcm