Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Vui lòng để tên hiển thị
21 tháng 7 2023 lúc 15:40

`a, x^3 + y^3 + x + y`

`= (x+y)(x^2-xy+y^2)+x+y`

`= (x+y)(x^2-xy+y^2+1)`

`b, x^3 - y^3 + x -y`

`= (x-y)(x^2+xy+y^2)+x-y`

`= (x-y)(x^2+xy+y^2+1)`

`c, (x-y)^3 + (x+y)^3`

`= (x-y+x+y)(x^2-2xy+y^2 - x^2 + y^2 + x^2 + 2xy + y^2)`

`= (2x)(x^2 + 3y^2)`

`d, x^3 - 3x^2y + 3xy^2 - y^3 + y^2 - x^2`

`= (x-y)^3 + (y-x)(x+y)`

`=(x-y)(x^2+2xy+y^2-x-y)`

Nguyễn Lê Phước Thịnh
21 tháng 7 2023 lúc 15:40

a: =(x+y)(x^2-xy+y^2)+(x+y)

=(x+y)(x^2-xy+y^2+1)

b: =(x-y)(x^2+xy+y^2)+(x-y)

=(x-y)(x^2+xy+y^2+1)

c: =x^3-3x^2y+3xy^2-y^3+x^3+3x^2y+3xy^2-y^3

=2x^3+6xy^2

d: =(x-y)^3+(y-x)(y+x)

=(x-y)[(x-y)^2-(x+y)]

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 8 2017 lúc 4:27

x 3 - x + 3 x 2 y + 3 x y 2 + y 3 - y = x 3 + 3 x 2 y + 3 x y 2 + y 3 - x - y = x + y 3 - x - y = x + y x + y 2 - 1 = x + y x + y + 1 x + y - 1

Kwalla
Xem chi tiết
HT.Phong (9A5)
4 tháng 9 2023 lúc 17:26

a) \(2x^2+5x+2\)

\(=2x^2+4x+x+2\)

\(=2x\left(x+2\right)+\left(x+2\right)\)

\(=\left(x+2\right)\left(2x+1\right)\)

b) \(4x^2-4x-9y^2+12y-3\)

\(=\left(4x^2-4x+1\right)-\left(9y^2-12y+4\right)\)

\(=\left(2x-1\right)^2-\left(3y-2\right)^2\)

\(=\left(2x-1+3y-2\right)\left(2x-1-3y+2\right)\)

\(=\left(2x+3y-3\right)\left(2x-3y+1\right)\)

c) \(x^4-2x^3-4x^2+4x-3\)

\(=x^4+x^3-x^2+x-3x^2-3x+3x-3\)

\(=\left(x^4+x^3-x^2+x\right)-\left(3x^2+3x-3x+3\right)\)

\(=x\left(x^3+x^2-x+1\right)-3\left(x^3+x^2-x+1\right)\)

\(=\left(x^3+x^2-x+1\right)\left(x-3\right)\)

d) \(x^3-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

Tiên Võ
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2021 lúc 23:12

Bài 2: 

a: \(x^2+5x-6=\left(x+6\right)\left(x-1\right)\)

b: \(5x^2+5xy-x-y\)

\(=5x\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(5x-1\right)\)

c:\(-6x^2+7x-2\)

\(=-6x^2+3x+4x-2\)

\(=-3x\left(2x-1\right)+2\left(2x-1\right)\)

\(=\left(2x-1\right)\left(-3x+2\right)\)

Lấp La Lấp Lánh
15 tháng 10 2021 lúc 23:18

1.

a) \(=x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2\)

b) \(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)

\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)

c) \(=5\left[\left(x^2-2xy+y^2\right)-4z^2\right]=5\left[\left(x-y\right)^2-4z^2\right]\)

\(=5\left(x-y-2z\right)\left(x-y+2z\right)\)

2.

a) \(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)

b) \(=5x\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(5x-1\right)\)

c) \(=-\left[3x\left(2x-1\right)-2\left(2x-1\right)\right]=-\left(2x-1\right)\left(3x-2\right)\)

3.

b) \(=2x\left(x-1\right)+5\left(x-1\right)=\left(x-1\right)\left(2x+5\right)\)

c) \(=-\left[5x\left(x-3\right)-1\left(x-3\right)\right]=-\left(x-3\right)\left(5x-1\right)\)

4.

a) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)

b) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)

\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

Mai Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 19:57

=(x-y)^3-(x-y)(x+y)

=(x-y)(x^2-2xy+y^2-x-y)

YangSu
15 tháng 6 2023 lúc 20:01

\(x^3-3x^2y+3xy^2-y^3+y^2-x^2\)

\(=\left(x-y\right)^3-\left(x^2-y^2\right)\)

\(=\left(x-y\right)^3-\left(x-y\right)\left(x+y\right)\)

\(=\left(x-y\right)\left[\left(x-y\right)^2-\left(x+y\right)\right]\)

\(=\left(x-y\right)\left(x^2-2xy+y^2-x-y\right)\)

 

NT Quỳnh Anh
Xem chi tiết
Khánh Linh Đỗ
Xem chi tiết
⭐Hannie⭐
12 tháng 10 2023 lúc 17:44

`x^2 -4x+4-y^2`

`=(x^2 -4x+4)-y^2`

`=(x-2)^2 -y^2`

`=(x-2-y)(x-2+y)`

`x^2+2xy+y^2-x-y`

`=(x^2+2xy+y^2) -(x+y)`

`=(x+y)^2 -(x+y)`

`=(x+y)(x+y-1)`

`x^2-2xy+y^2-9`

`=(x^2-2xy+y^2)-3^2`

`=(x-y)^2-3^3`

`=(x-y-3)(x-y+3)`

Tách ra đi cậu.

Mai Huy Bảo
Xem chi tiết
Toru
1 tháng 9 2023 lúc 21:41

\(\left(x+y-z\right)^3-x^3-y^3+z^3\)

\(=\left[\left(x+y\right)-z\right]^3-x^3-y^3+z^3\)

\(=\left(x+y\right)^3-z^3-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)

\(=x^3+y^3-z^3+3xy\left(x+y\right)-3\left(x+y\right)z\left(x+y-z\right)-x^3-y^3+z^3\)

\(=3xy\left(x+y\right)-3z\left(x+y\right)\left(x+y-z\right)\)

\(=3\left(x+y\right)\left[xy-z\left(x+y-z\right)\right]\)

\(=3\left(x+y\right)\left(xy-zx-yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y-z\right)-z\left(y-z\right)\right]\)

\(=3\left(x+y\right)\left(y-z\right)\left(x-z\right)\)

#\(Urushi\text{☕}\)

Minh Duong
1 tháng 9 2023 lúc 21:38

Áp dụng (a+b)3 = a3+b3+3ab(a+b), ta có:

(x+y+z)3-x3-y3-z3

=[(x+y)+z]3-x3-y3-z3

=(x+y)3+z3+3z(x+y)(x+y+z)-x3-y3-z3

=x3+y3+3xy(x+y)+z3+3z(x+y)(x+y+z)-x3-y3-z3

=3(x+y)(xy+xz+yz+z2)

=3(x+y)[x(y+z)+z(y+z)]

=3(x+y)(y+z)(x+z)

Nguyễn Lê Phước Thịnh
1 tháng 9 2023 lúc 21:39

=(x+y-z-x)[(x+y-z)^2+x(x+y-z)+x^2]-(y-z)(y^2+yz+z^2)

=(y-z)(x^2+y^2+z^2+2xy-2xz-2yz+x^2+xy-xz+x^2-y^2-yz-z^2)

=(y-z)(3x^2+3xy-3xz-3yz)

=3(y-z)(x^2+xy-xz-yz)

=3(y-z)[x(x+y)-z(x+y)]

=3(y-z)(x+y)(x-z)