chứng minh rằng:\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\) mọi a thuộc r (giúp mk với ạ)
Chứng minh rằng:
\(\frac{a^2+a+2}{\sqrt{a^2+a+1}}\ge2\) với mọi a.
\(a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall a\)
\(P=\frac{a^2+a+1+1}{\sqrt{a^2+a+1}}=\sqrt{a^2+a+1}+\frac{1}{\sqrt{a^2+a+1}}\ge2\) (Cô-si)
Dấu "=" xảy ra khi \(a^2+a+1=1\Rightarrow\left[{}\begin{matrix}a=0\\a=-1\end{matrix}\right.\)
Chứng minh rằng: \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)với mọi a
\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\)(luôn đúng với mọi a)
Ta có: \(\frac{a^2+2}{\sqrt{a^2+1}}=\frac{\left(\sqrt{a^2+1}\right)^2+1}{\sqrt{a^2+1}}=\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\)
Áp dụng bđt cô - si, ta có:
\(\sqrt{a^2+1}+\frac{1}{\sqrt{a^2+1}}\ge2\sqrt{\frac{1}{\sqrt{a^2+1}}.\sqrt{a^2+1}}=2\)
Đẳng thức xảy ra khi a = 0
Cho biểu thức \(P=\frac{\sqrt{a^2}\left(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\right)}{\sqrt{a^2-2a+1}}\)( với a thuộc r , a>=2)
a, Rút gọn biểu thức P
b, Chứng minh rằng nếu a là số thức và \(a\ge2\) thì \(P\ge4\)
\(P=\frac{a\left(\sqrt{\left(\sqrt{a-1}+1\right)^2}+\sqrt{\left(\sqrt{a-1}-1\right)^2}\right)}{\sqrt{\left(a-1\right)^2}}\)
\(=\frac{a\left(\sqrt{a-1}+1+\sqrt{a-1}-1\right)}{a-1}=\frac{2a\sqrt{a-1}}{a-1}=\frac{2a}{\sqrt{a-1}}\)
\(P-4=\frac{2a}{\sqrt{a-1}}-4=\frac{2\left(a-2\sqrt{a-1}\right)}{\sqrt{a-1}}=\frac{2\left(\sqrt{a-1}-1\right)^2}{\sqrt{a-1}}\ge0\)
\(\Rightarrow P\ge4\)
Chứng minh: \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge2\sqrt{2\left(a+b\right)\sqrt{ab}}\) với a,b \(\ge\)0
Mọi người giúp mk bài này với ạ. mình đang cần gấp
\(\left(\sqrt{a}+\sqrt{b}\right)^2=a+b+2\sqrt{ab}\)
áp dụng bất đẳng thức cô si ta có:
\(\left(a+b\right)+2\sqrt{ab}>=2\sqrt{\left(a+b\right)2\sqrt{ab}}\)
Cho biểu thức \(P=\frac{\sqrt{a^2}\left(\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}\right)}{\sqrt{a^2-2a+1}}\)( với a thuộc r , a>=2)
a, Rút gọn biểu thức P
b, Chứng minh rằng nếu a là số thức và \(a\ge2\) thì \(P\ge4\)
Chứng minh
\(\frac{a^2+a+2}{\sqrt{a^2+a+1}}\ge2\) với mọi a
Chứng minh rằng:
a) \(\sqrt{x^2+2x+5}\ge2\) với mọi x∈R
b) \(x>\sqrt{x}\) với mọi x>1
a) có \(\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}=\sqrt{\left(x+1\right)^2+4}\)Vì \(\left(x+1\right)^2\ge0\forall x\in R\rightarrow\left(x+1\right)^2+4\ge0+4=4\forall x\in R\)
\(\Rightarrow\sqrt{x^2+2x+5}\ge\sqrt{0+4}=\sqrt{4}=2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=-1.\)
b) \(x>\sqrt{x}\Leftrightarrow x^2>x\Leftrightarrow x^2-x>0\)
\(\Leftrightarrow x\left(x-1\right)\ge0\)
Vì \(x>1\rightarrow x>0;x-1>0\)
\(\Rightarrow x\left(x-1\right)>0\) với mọi \(x>1\)
hay \(x>\sqrt{x}\) (đpcm)
Chúc bạn học tốt!
a)
√(x^2+2x+5)>2
<=>x^2+2x+5>4
<=>x^+2x+1>0
(x+1)^2 > 0 =>dpcm
b)
x>1<=>x^2>x
x(x-1)>0
luon dung
a) Với mọi x,y,z chứng minh rằng: \(x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
b) Cho \(xy=1\) và \(x>y\).Chứng minh: \(\frac{x^2+y^2}{x-y}\ge2\sqrt{2}\)
Giúp minh với
a) Với mọi số thực x ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)
Tương tự \(y^2+1\ge2y,z^2+1\ge2z\)
Cộng theo vế các bất phương trình trên ta có0:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
\(\Leftrightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Dấu "=" xảy ra khi và chỉ khi x=y=z=1
b) \(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)
Vì x>y => x-y >0. Áp dụng bất đẳng thức cosi cho x-y>0 và 2/(x-y) >0. Ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
Cho a > b > 0 và a.b = 1.
Chứng minh: \(\frac{a^2+b^2}{a-b}\ge2\sqrt{2}\)
Giúp mình với ạ!