giải pt sau
\(x^4+\left(x^2+1\right)\sqrt{x^2+1}-1=0\)
giải các PT sau :
a) \(\left|2x+3\right|-\left|x\right|+\left|x-1\right|=2x+4\)
b) \(\sqrt{x}-\dfrac{4}{\sqrt{x+2}}+\sqrt{x+2}=0\)
c) \(\sqrt{x+\sqrt{2x-1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
d) \(x+\sqrt{x+\dfrac{1}{2}+\sqrt{x+\dfrac{1}{4}}}=4\)
e) \(\sqrt{4x+3}+\sqrt{2x+1}=6x+\sqrt{8x^2+10x+3}-16\)
f)\(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP
Giải PT sau :
\(3x\left(2+\sqrt{9x^2+3}\right)-\left(4x+1\right)\left(1+\sqrt{1+x+x^2}\right)=0\)
Giải PT sau: \(\sqrt{3x^2}\) \(-\) \(\left(1-\sqrt{3}\right)\)x \(-\) 1 = 0
\(\sqrt{3x^2}-\left(1-\sqrt{3}\right)x-1=0\)
\(\Leftrightarrow\sqrt{3}x-x-\sqrt{3}x-1=0\)
\(\Leftrightarrow-x-1=0\)
\(\Leftrightarrow-x=1\)
\(\Leftrightarrow x=-1\)
Giải pt bậc hai:
a/ \(\left(1-\sqrt{2}\right)x^2-2\left(1+\sqrt{2}\right)x+1+3\sqrt{2}=0\)
b/ \(2x^2-6\left(\sqrt{2}+1\right)x+4\sqrt{2}=0\)
a/ (1−\(\sqrt{2}\))x2 −2(1+\(\sqrt{2}\))x+1+3\(\sqrt{2}\)=0
⇔ (1−\(\sqrt{2}\)) (x2 - 2x +3) = 0 (Đặt nhân tử chung)
⇔ 1- \(\sqrt{2}\) = 0 và x2 -2x +3 = 0
b) nhân 6 với \(\sqrt{2}\)+1 là ra phương trình bậc 2
Giải pt và hệ pt:
a)\(\sqrt{5x+1}-\sqrt{4-x}+2x^2-5x+6=0\)
b)\(\left\{{}\begin{matrix}\sqrt{2x+1}+\sqrt{2y+1}=\frac{\left(x-y\right)^2}{2}\\\left(x+y\right)\left(x+2y\right)+3x+2y=4\end{matrix}\right.\)
giải các pt sau:
1).\(\left(x^2-x+\sqrt{2}-2\right)\sqrt{1-2x}=0\)
2).\(4\sqrt{1+x}-1=3x+2\sqrt{1-x}+\sqrt{1-x^2}\)
1. ĐKXĐ: $x\leq \frac{1}{2}$
PT \(\Leftrightarrow [(x^2-2)-(x-\sqrt{2})]\sqrt{1-2x}=0\)
\(\Leftrightarrow (x-\sqrt{2})(x+\sqrt{2}-1)\sqrt{1-2x}=0\)
\(\Leftrightarrow \left[\begin{matrix} x-\sqrt{2}=0\\ x+\sqrt{2}-1=0\\ \sqrt{1-2x}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\sqrt{2}\\ x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)
Kết hợp đkxđ suy ra \(\left[\begin{matrix} x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)
2. ĐKXĐ: $-1\leq x\leq 1$
Đặt $\sqrt{1+x}=a; \sqrt{1-x}=b(a,b\geq 0)$. Khi đó ta có:
$4a-\frac{a^2+b^2}{2}=\frac{3(a^2-b^2)}{2}+2b+ab=0$
$\Leftrightarrow 2a^2-b^2+ab-4a+2b=0$
$\Leftrightarrow (a+b-2)(2a-b)=0$
Xét 2 TH:
TH1: $a+b-2=0$
$\Leftrightarrow \sqrt{1-x}+\sqrt{1+x}=2$
$\Leftrightarrow 2+2\sqrt{1-x^2}=4$
$\Leftrightarrow \sqrt{1-x^2}=1$
$\Leftrightarrow x=0$ (tm)
TH2: $2a-b=0$
$\Leftrightarrow 2\sqrt{1+x}=\sqrt{1-x}$
$\Leftrightarrow 4(x+1)=1-x$
$\Leftrightarrow x=\frac{-3}{5}$ (tm)
Vậy.........
giải pt vô tỉ sau
\(3x\left(2+\sqrt{9x^2+3}\right)+\left(4x+2\right)\left(1+\sqrt{1+x+x^2}\right)=0\)
T sợ chỉ dám liên hợp thôi, nhường cách bình phương cho 1 ng` chăm chỉ :(
\(pt\Leftrightarrow6x+3x\sqrt{9x^2+3}+4x+2+\left(4x+2\right)\sqrt{x^2+x+1}=0\)
\(\Leftrightarrow2\left(5x+1\right)+\left(3x\sqrt{9x^2+3}+\dfrac{6\sqrt{21}}{25}\right)+\left(\left(4x+2\right)\sqrt{x^2+x+1}-\dfrac{6\sqrt{21}}{25}\right)=0\)
\(\Leftrightarrow2\left(5x+1\right)+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(5x+1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+1\right)\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}=0\)
\(\Leftrightarrow\left(5x+1\right)\left(2+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}\right)=0\)
\(\Rightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)
giải pt: a) \(\sqrt{x+1}+\sqrt{5x}=\sqrt{4x-3}+\sqrt{2x+4}\)
b) \(\left(x-1\right)\left(x+2\right)+2\sqrt[]{x^2+x+1}=0\)
a/ ĐKXĐ: \(x\ge\frac{3}{4}\)
\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)
\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)
\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)
b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)
Đặt \(\sqrt{x^2+x+1}=t>0\)
\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{x^2+x+1}=1\)
\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Giúp e với ạ !!
Giải pt vô tỉ sau
\(x+1=\sqrt{2\left(x+1\right)+2\sqrt{2\left(x+1\right)+2\sqrt{4\left(x+1\right)}}}\)