Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Trang
Xem chi tiết
Nguyễn Minh Tài
Xem chi tiết
pansak9
Xem chi tiết
HT.Phong (9A5)
24 tháng 6 2023 lúc 16:40

\(\sqrt{3x^2}-\left(1-\sqrt{3}\right)x-1=0\)

\(\Leftrightarrow\sqrt{3}x-x-\sqrt{3}x-1=0\)

\(\Leftrightarrow-x-1=0\)

\(\Leftrightarrow-x=1\)

\(\Leftrightarrow x=-1\)

Vy Nguyễn Đặng Khánh
Xem chi tiết
Nguyễn Hà Trâm Anh
20 tháng 12 2019 lúc 17:29

a/ (1−\(\sqrt{2}\))x2 −2(1+\(\sqrt{2}\))x+1+3\(\sqrt{2}\)=0

⇔ (1−\(\sqrt{2}\)) (x2 - 2x +3) = 0 (Đặt nhân tử chung)

⇔ 1- \(\sqrt{2}\) = 0 và x2 -2x +3 = 0

b) nhân 6 với \(\sqrt{2}\)+1 là ra phương trình bậc 2

Khách vãng lai đã xóa
Đinh Doãn Nam
Xem chi tiết
Hug Hug - 3 cục bánh bao...
Xem chi tiết
Akai Haruma
20 tháng 8 2021 lúc 0:20

1. ĐKXĐ: $x\leq \frac{1}{2}$
PT \(\Leftrightarrow [(x^2-2)-(x-\sqrt{2})]\sqrt{1-2x}=0\)

\(\Leftrightarrow (x-\sqrt{2})(x+\sqrt{2}-1)\sqrt{1-2x}=0\)

\(\Leftrightarrow \left[\begin{matrix} x-\sqrt{2}=0\\ x+\sqrt{2}-1=0\\ \sqrt{1-2x}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\sqrt{2}\\ x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)

Kết hợp đkxđ suy ra \(\left[\begin{matrix} x=1-\sqrt{2}\\ x=\frac{1}{2}\end{matrix}\right.\)

Akai Haruma
20 tháng 8 2021 lúc 0:26

2. ĐKXĐ: $-1\leq x\leq 1$

Đặt $\sqrt{1+x}=a; \sqrt{1-x}=b(a,b\geq 0)$. Khi đó ta có:

$4a-\frac{a^2+b^2}{2}=\frac{3(a^2-b^2)}{2}+2b+ab=0$

$\Leftrightarrow 2a^2-b^2+ab-4a+2b=0$

$\Leftrightarrow (a+b-2)(2a-b)=0$

Xét 2 TH:

TH1: $a+b-2=0$

$\Leftrightarrow \sqrt{1-x}+\sqrt{1+x}=2$

$\Leftrightarrow 2+2\sqrt{1-x^2}=4$
$\Leftrightarrow \sqrt{1-x^2}=1$

$\Leftrightarrow x=0$ (tm)

TH2: $2a-b=0$

$\Leftrightarrow 2\sqrt{1+x}=\sqrt{1-x}$

$\Leftrightarrow 4(x+1)=1-x$

$\Leftrightarrow x=\frac{-3}{5}$ (tm)

Vậy.........

Vũ Tiền Châu
Xem chi tiết
Lightning Farron
1 tháng 11 2017 lúc 11:44

T sợ chỉ dám liên hợp thôi, nhường cách bình phương cho 1 ng` chăm chỉ :(

\(pt\Leftrightarrow6x+3x\sqrt{9x^2+3}+4x+2+\left(4x+2\right)\sqrt{x^2+x+1}=0\)

\(\Leftrightarrow2\left(5x+1\right)+\left(3x\sqrt{9x^2+3}+\dfrac{6\sqrt{21}}{25}\right)+\left(\left(4x+2\right)\sqrt{x^2+x+1}-\dfrac{6\sqrt{21}}{25}\right)=0\)

\(\Leftrightarrow2\left(5x+1\right)+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(5x+1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+1\right)\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}=0\)

\(\Leftrightarrow\left(5x+1\right)\left(2+\dfrac{\dfrac{27}{625}\left(5x-1\right)\left(75x^2+28\right)}{3x\sqrt{9x^2+3}-\dfrac{6\sqrt{21}}{25}}+\dfrac{\dfrac{4}{625}\left(5x+4\right)\left(100x^2+100x+109\right)}{\left(4x+2\right)\sqrt{x^2+x+1}+\dfrac{6\sqrt{21}}{25}}\right)=0\)

\(\Rightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)

Mai Vũ
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 9 2020 lúc 13:39

a/ ĐKXĐ: \(x\ge\frac{3}{4}\)

\(\Leftrightarrow6x+1+2\sqrt{5x^2+5x}=6x+1+2\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow\sqrt{5x^2+5x}=\sqrt{8x^2+10x-12}\)

\(\Leftrightarrow5x^2+5x=8x^2+10x-12\)

\(\Leftrightarrow3x^2+5x-12=0\Rightarrow\left[{}\begin{matrix}x=-3< \frac{3}{4}\left(l\right)\\x=\frac{4}{3}\end{matrix}\right.\)

b/ \(\Leftrightarrow x^2+x+1+2\sqrt{x^2+x+1}-3=0\)

Đặt \(\sqrt{x^2+x+1}=t>0\)

\(\Rightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{x^2+x+1}=1\)

\(\Leftrightarrow x^2+x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

Khách vãng lai đã xóa
Vũ Tiền Châu
Xem chi tiết