Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Jeese
Xem chi tiết
Nguyễn Huy Tú
12 tháng 3 2022 lúc 21:39

a, bậc 6 

b, bậc 6 

c, bậc 12 

d, bậc 9 

e, bậc 8 

xuan vu
13 tháng 4 2022 lúc 18:30

huhu

bách hoàng
Xem chi tiết
Diệu Huyền
21 tháng 12 2019 lúc 9:25

1 a) Tìm giá trị nhỏ nhất của biểu thức:

\(A=x^2-6x+2\)

\(=\left(x-3\right)^2-7\ge-7\)

\(B=4x^2-x+2\)

\(=4\left(x-\frac{1}{8}\right)^2+\frac{31}{16}\ge\frac{31}{16}\)

\(C=4x^2+2y^2+4xy-4x-6y+2019\)

\(=4x^2+4x\left(y-1\right)+\left(y-1\right)^2+y^2-4y+4+2014\)

\(=\left(2x+y-1\right)^2+\left(y-2\right)^2+2014\ge2014\)

\(D=\frac{-3}{x^2-6x+10}\)

\(=\frac{-3}{\left(x-3\right)^2+1}\ge3\)

Khách vãng lai đã xóa
Diệu Huyền
21 tháng 12 2019 lúc 19:37

Violympic toán 8

Khách vãng lai đã xóa
Nguyễn Quốc Khánh
Xem chi tiết
Lil Học Giỏi
Xem chi tiết
Bé Doraemon
25 tháng 12 2019 lúc 21:40
https://i.imgur.com/rO5CGyj.jpg
Khách vãng lai đã xóa
Xuân An
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2022 lúc 11:34

1: \(=\left(x-3y\right)\left(x-y\right)-\left(x-3y\right)=\left(x-3y\right)\left(x-y-1\right)\)

4: \(=6x^2-4xy+3xy-2y^2+3x-2y\)

\(=\left(3x-2y\right)\left(2x+y\right)+3x-2y=\left(3x-2y\right)\left(2x+y+1\right)\)

 

 

shoppe pi pi pi pi
Xem chi tiết
tth_new
11 tháng 5 2019 lúc 20:35

a) \(A=x^2+2y^2+2xy+4x+6y+19\)

\(=\left[\left(x^2+2xy+y^2\right)+2.\left(x+y\right).2+4\right]+\left(y^2+2y+1\right)+14\)

\(=\left[\left(x+y\right)^2+2\left(x+y\right).2+2^2\right]+\left(y+1\right)^2+14\)

\(=\left(x+y+2\right)^2+\left(y+1\right)^2+14\ge14\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y+2=0\\y=-1\end{cases}}\Leftrightarrow x=y=-1\)

b)Đề có gì đó sai sai...

c) Tương tự câu b,em cũng thấy sai sai...HÓng cao nhân giải ạ!

Trần Thanh Phương
12 tháng 5 2019 lúc 8:00

b) \(P=2x^2+y^2+2xy-2y-4\)

\(\Leftrightarrow2P=4x^2+2y^2+4xy-4y-8\)

\(\Leftrightarrow2P=\left(4x^2+4xy+y^2\right)+\left(y^2-4y+4\right)-12\)

\(\Leftrightarrow2P=\left(2x+y\right)^2+\left(y-2\right)^2-12\ge-12\forall x;y\)

Có \(2P\ge-12\Leftrightarrow P\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Hacker Chuyên Nghiệp
Xem chi tiết
zZz Cool Kid_new zZz
22 tháng 2 2019 lúc 19:33

Nếu một trong các số x,y,z bằng không thì dễ thấy các số còn lại cũng bằng 0

Suy ra x;y;z khác 0

Đặt \(2=a;4=b;6=c\) khi đó ta có:

\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)

\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+xcy}=\frac{xyz}{cyx+ayz}\)

Mà \(x;y;z\ne0\) suy ra:

\(ayz+bxz=bxz+xcy=cxy+ayz\)

\(\Rightarrow az=cx;bx=ay\)

\(\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)

\(\Rightarrow x=ak;y=bk;z=ck\)

Khi đó:\(\frac{xy}{ay+bx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{ak\cdot bk}{abk+abk}=\frac{a^2k^2+b^2k^2+c^2k^2}{a^2+b^2+c^2}\)

\(\Rightarrow\frac{k}{2}=k^2\)

\(\Rightarrow k=\frac{1}{2}\)

\(\Rightarrow x=\frac{a}{2};y=\frac{b}{2};z=\frac{c}{2}\)

Thay số vào,ta được:

\(x=1;y=2;z=3\)

Xmaf
Xem chi tiết
Nguyệt
15 tháng 3 2019 lúc 12:54

\(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{xz}{6x+2z}\)(4z chứ 4x là sai đề rồi bạn)

\(\Leftrightarrow\frac{x}{2}+\frac{y}{4}=\frac{y}{4}+\frac{z}{6}=\frac{z}{6}+\frac{x}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)tự làm tiếp :))

Khang Hi
13 tháng 5 2023 lúc 20:33
Monsmoke
Xem chi tiết
Monsmoke
27 tháng 9 2019 lúc 19:48

sorry sai đề :v

Sửa \(\frac{xy}{2y+4x}+\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)

Nguyễn Việt Hoàng
27 tháng 9 2019 lúc 20:05

Ta có :

 \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\)

\(\Leftrightarrow\frac{xyz}{2yz+4xz}=\frac{xyz}{4xz+6xy}=\frac{xyz}{6xy+2yz}\)

\(\Rightarrow2yz+4xz=4xz+6xy=6xy+2yz\)

\(\Rightarrow\hept{\begin{cases}2yz=6xy\\4xz=2yz\end{cases}}\Leftrightarrow\hept{\begin{cases}z=3x\\y=2x\end{cases}}\)

\(\rightarrow x:y:z=1:2:3\frac{xy}{2y+4x}\)  \(=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{2x^2}{4y+4x}=\frac{x}{4}.\frac{x^2+y^2+z^2}{2^2+4^2+6^2}=\frac{14x^2}{56}=\frac{x^2}{4}\rightarrow\frac{x^2}{4}=\frac{x}{4}\)

\(\Rightarrow\frac{x^2-x}{4}=0\Leftrightarrow x-1=0\left(x\ne0\right)\)

\(\Rightarrow x=1\rightarrow x=1;y=2;z=3\)

Làm thử thôi sai thì thôi nha !