Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
umi
Xem chi tiết
ST
12 tháng 3 2017 lúc 12:02

A = 4/1.2 + 4/2.3 +...+ 4/2014.2015

= 4(1 - 1/2 + 1/2 - 1/3 +...+ 1/2014 - 1/2015)

= 4.(1 - 1/2015)

= 4 . 2014/2015

= 8056/2015

Trần Đại Phát
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2022 lúc 7:15

\(A=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\)

\(=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)

ebedangiu
Xem chi tiết
Vô danh
18 tháng 3 2022 lúc 21:07

\(\dfrac{4}{1.2}+\dfrac{4}{2.3}+...+\dfrac{4}{2021.2022}\\ =4\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2021.2022}\right)\\ =4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\right)\\ =4\left(1-\dfrac{1}{2022}\right)\\ =4.\dfrac{2021}{2022}\\ =\dfrac{4042}{1011}\)

Nguyễn Ngọc Linh
18 tháng 3 2022 lúc 21:10

4/1.2 4/2.3 4/3.4 ... 4/2021.4/2022

= 1/4. (1/1- 1/2+ 1/2- 1/3+ 1/3- 1/4+...+1/2021- 1/2022)

=1/4. (1/1- 1/2022)= 1/4. (2022/2022- 1/2022)

= 1/4. 2021/2022

= 2021/8088

Lú Toán, Mù Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2022 lúc 14:41

\(=4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)=4\cdot\dfrac{2014}{2015}=\dfrac{8056}{2015}\)

ILoveMath
4 tháng 3 2022 lúc 14:43

\(\dfrac{4}{1.2}+\dfrac{4}{2.3}+...+\dfrac{4}{2014.2015}\\ =4\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2014.2015}\right)\\ =4\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2014}-\dfrac{1}{2015}\right)\\ =4\left(1-\dfrac{1}{2015}\right)\\ =4.\dfrac{2014}{2015}\\ =\dfrac{8056}{2015}\)

Minh Anh sô - cô - la lư...
4 tháng 3 2022 lúc 14:43

\(\dfrac{8056}{2015}\)

ILoveMath đã xóa
Sorano Yuuki
Xem chi tiết
Nguyễn Huy Hào
23 tháng 5 2017 lúc 18:07

sorry mình nhầm

ta có:

M=\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).\(\frac{4^2}{4.5}\)

=\(\frac{1.1.2.2.3.3.4.4}{1.2.2.3.3.4.4.5}\)

=\(\frac{1}{5}\)

vậy M=\(\frac{1}{5}\)

Đào Trọng Luân
23 tháng 5 2017 lúc 17:54

\(M=\frac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\frac{1}{5}\)

Nguyễn Huy Hào
23 tháng 5 2017 lúc 18:03

ta có:

\(\frac{1^2}{1.2}\).\(\frac{2^2}{2.3}\).\(\frac{3^2}{3.4}\).

lê ruby anna
Xem chi tiết
Nguyễn Phương Uyên
22 tháng 3 2018 lúc 20:30

hình như là 32 chứ k f 33

\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)

\(B=\frac{\left(1\cdot1\right)\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)}{\left(1\cdot2\right)\left(2\cdot3\right)\left(3\cdot4\right)\left(4\cdot5\right)}\)

\(B=\frac{\left(1\cdot2\cdot3\cdot4\right)\left(1\cdot2\cdot3\cdot4\right)}{\left(1\cdot2\cdot3\cdot4\right)\left(2\cdot3\cdot4\cdot5\right)}\)

\(=\frac{1}{5}\)

Huỳnh Phước Mạnh
22 tháng 3 2018 lúc 20:33

\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)

\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5}\)

\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1^2\cdot2^2\cdot3^2\cdot4^2\cdot5}=\frac{1}{5}\)

nguyễn an bình
Xem chi tiết
.
14 tháng 6 2020 lúc 9:19

\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)

\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)

\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)

Vậy \(A=\frac{2019}{505}.\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)

\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)

\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)

Vậy \(B=\frac{4949}{19800}.\)

Khách vãng lai đã xóa
Huỳnh Quang Sang
14 tháng 6 2020 lúc 9:25

\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)

\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)

\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)

\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)

Đến đây tự tính

\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)

\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)

\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)

Số hơi bị dữ nên tính nốt nhé

Khách vãng lai đã xóa
Nobi Nobita
14 tháng 6 2020 lúc 9:35

a) \(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+........+\frac{4}{2019.2020}\)

\(=4.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{2019.2020}\right)\)

\(=4.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+........+\frac{1}{2019}-\frac{1}{2020}\right)\)

\(=4.\left(1-\frac{1}{2020}\right)=4.\frac{2019}{2020}=\frac{2019}{505}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Ánh
Xem chi tiết
Xyz OLM
16 tháng 8 2020 lúc 9:13

A) Ta có S = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

=> 3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98)

=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100

=> 3S = 99.100.101

=> 3S =  999900

=> S = 333300

b) Để A đạt giá trị nhỏ nhất

=> (x - 1)2 nhỏ nhất 

mà \(\left(x-1\right)^2\ge0\forall x\)

=> (x - 1)2 = 0 là giá trị nhỏ nhất của (x - 1)2

=> x - 1 = 0

=> x = 1

Vậy khi x = 1 thì A đạt giá trị nhỏ nhất

Để |x + 4| + 1996 đạt giá trị nhỏ nhất

=> |x + 4| nhỏ nhất

mà \(\left|x+4\right|\ge0\forall x\)

=> Giá trị nhỏ nhất của |x + 4| khi |x + 4| = 0

=> x + 4 = 0

=. x = -4

Vậy khi x = -4 thì B đạt GTNN

Khách vãng lai đã xóa
Nguyễn Thị Thu Chi
Xem chi tiết
OoO_Nhok_Lạnh_Lùng_OoO
27 tháng 6 2017 lúc 9:08
Nguyễn Thị Thu ChiS=1.2+2.3+3.4+.............+n(n+1) 
S =1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1) 
S =(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n) 
ta có các công thức: 
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6 
1 + 2 + 3 + ...+ n = n(n+1)/2 
thay vào ta có: 
S = n(n+1)(2n+1)/6 + n(n+1)/2 
=n(n+1)/2[(2n+1)/3 + 1] 
=n(n+1)(n+2)/3

ko chắc chắn lắm

Related image