cho tam giác ABC có AB=6cm , AB=8cm , BC=10cm ; đường cao AH gọi D,E thứ tự là hình chiếu của H trên AB và AC . Chúng minh : tam ABC vuông tại A . Tính góc B , góc C ? . Chứng minh tam giác ADE đồng dạng tam giác ACB
Cho tam giác ABC có BC=10cm, AB=6cm và AC=8cm. Tam giác ABC là tam giác gì? vì sao?
Xét \(\Delta ABC:\)
\(BC^2=10^2=100.\\ AB^2+AC^2=6^2+8^2=100.\\ \Rightarrow BC^2=AB^2+AC^2.\)
\(\Rightarrow\Delta ABC\) vuông tại A (Pytago đảo).
Cho tam giác ABC có AB=6cm BC=10cm AC=8cm. Tính diện tích tam giác
cho tam giác ABC có AB=8CM ; AC=6CM và BC=10CM . Chứng minh rằng tam giác ABC là tam giác vuông tại A
Ta có:
\(AB^2+AC^2=8^2+6^2=64+36=100\left(cm\right)\)
\(BC^2=10^2=100\left(cm\right)\)
\(\Rightarrow AB^2+AC^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A (định lý Pi-ta-go đảo)
Áp dụng định lý Pytago đảo ta có:
AB2+AC2=82+62=100
mà 102=100
⇒82+62=102hay AB2+AC2=BC2
vậy ABC là tam giác vuông tại A
áp dụng định lý pitago ta có :
ab^2+ac^2=8^2+6^2=100=10^2
=>bc=10cm
=>tam giác abc vuông tại a
Cho tam giác ABC có AB = 6cm ; AC = 8cm ; BC = 10cm. Hỏi tam giác ABC là ta giác gì? Vì sao?
Là tam giác vuông
Theo định lý Py-ta-go :
6^2 +8^2 = 10^2 (đpcm)
khi muốn bt nó là tam giác gì thì ta thường áp định lí pi-ta-go đảo vào bài đó và thường là xét các cạnh
ta sẽ lấy tổng bình phương hai cạnh nhỏ nhất xem có bằng bình phương cạnh lớn nhất hay ko
áp vào bài này
lấy: 62+82=36+64=100
100=102
Vậy tam giác này là tam giác vuông
Tam giác ABC có AB=6cm AC=8cm BC=10cm. Tam giác ABC có phải là tam giác vuông không?
Xét ΔABC có \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
Cho tam giác ABC có AB= 8cm; AC = 6cm và BC = 10cm. Tính chu vi đường tròn ngoại tiếp tam giác ABC?
A. 8 π (cm)
B. 10 π (cm)
C. 6 π (cm)
D. 12 π (cm)
Chọn đáp án B.
Ta có: A B 2 + A C 2 = B C 2 ( = 100)
Suy ra, tam giác ABC là tam giác vuông tạiA. Do đó, tâm đường tròn ngoại tiếp tam giác ABC là trung điểm M của BC.
Bán kính đường tròn là: R = BC/2 = 5cm
Chu vi đường tròn ngoại tiếp tam giác ABC là:
C = 2 π . 5 = 10 π (cm)
cho tam giác abc có góc a=55độ ,ab=6cm ,bc=8cm,ac=10cm ,chứng minh tam giác abc là tam gaics vuông
Định lí đảo Py-ta-go:
Trong một tam giác có tổng bình phương của hai cạnh bằng bình phương cạnh còn lại thì tam giác đó là tam giác vuông.
Xét tam giác ABC, ta có: AB2 + BC2 = 62 + 82 = 100
và AC2 = 102 = 100
=> tam giác ABC là tam giác vuông tại B.
Cho tam giac ABC. AB=6cm, AC=8cm, BC=10cm.
Tam giác ABC có phải tam giác vuông ko? vì sao?
Trong tam giác ABC có:
+) AB2 = 62 = 36
+) AC2 = 82 = 64
+) BC2 = 102 = 100
=> AB2 + AC2 = 36 + 64 = 100 = BC2
=> AB2 + AC2 = BC2
Theo đ/lí Pi-ta-go đảo => tam giác ABC vuông tại A
Vậy...
+ Xét tam giác ABC có :
AB^2+AC^2=100
BC^2=10^2=100
=> AB^2+ AC^2= 100=BC^2
=> tam giác ABC vuông tại A ( Py-ta-go)
Cho tam giác ABC có AB = 6cm, AC = 10cm, BC = 8cm .
a) So sánh các góc của tam giác ABC
b) Tam giác ABC là tam giác gì? vì sao?
a: Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
b: XétΔABC có \(AC^2=BA^2+BC^2\)
nên ΔABC vuông tại B
a, Ta có AC > BC > AB
=> ^B > ^A > ^C
b, Ta có \(AC^2=AB^2+BC^2\Leftrightarrow100=64+36\)*đúng*
Vậy tam giác ABC vuông tại B
a) B>A>C|b)tâm giác ABC là tam giác vuông cân
cho tam giác ABC có AB=6cm,AC=8cm,BC=10cm.
tính diện tích tứ giác MHNA