Cho hàm số y = 4x,7 với x=3 thì y có có giá trị là
A. 0
B.12
C.13
D. 14
Câu 1: Cho hàm số y = (3m + 5) x\(^2\) với m \(\ne\) \(\dfrac{-5}{3}\). Tìm các giá trị của tham số m để hàm số:
a) Nghịch biến với mọi x > 0
b) Đồng biến với mọi x >0
c) Đạt giá trị lớn nhất là 0
d) Đạt giá trị nhỏ nhất là 0
Câu 2: Cho hàm số y = \(\left(\sqrt{3k+4}-3\right)x^2\) với k \(\ge\dfrac{-4}{3}\); k \(\ne\dfrac{5}{3}\)
Tính các giá trị của tham số K để hàm số:
a) Nghịch biến với mọi x >0
b) Đồng biến với mọi x >0
Câu 1:
a) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(3m+5< 0\)
\(\Leftrightarrow3m< -5\)
hay \(m< -\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) nghịch biến với mọi x>0 thì \(m< -\dfrac{5}{3}\)
b) Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì
3m+5>0
\(\Leftrightarrow3m>-5\)
hay \(m>-\dfrac{5}{3}\)
Vậy: Để hàm số \(y=\left(3m+5\right)\cdot x^2\) đồng biến với mọi x>0 thì \(m>-\dfrac{5}{3}\)
2.
Để hàm nghịch biến với x>0 \(\Leftrightarrow\sqrt{3k+4}-3< 0\)
\(\Leftrightarrow\sqrt{3k+4}< 3\Leftrightarrow3k+4< 9\)
\(\Rightarrow-\dfrac{4}{3}\le k< \dfrac{5}{3}\)
Để hàm đồng biến khi x>0
\(\Leftrightarrow\sqrt{3k+4}-3>0\Leftrightarrow\sqrt{3k+4}>3\)
\(\Leftrightarrow3k+4>9\Rightarrow k>\dfrac{5}{3}\)
bài 1 : Cho hàm số y=(m2-4m+3)x2
Tìm x để :
a, Hàm số đồng biến với x>0
b, hàm số nghịch biến với x>0
Bài 2 cho hàm số y=(m2-6m+12)x2
a, chứng tỏ rằng hàm số nghịch biến khi x<0 và đồng biến khi x>0
b,Khi m=2 tìm x để y=-2
c,khi m =5 tính giá trị của y biết x=1+căn 2
d, tìm m khi x=1 và y = 5
cho hàm số \(y=\left(\sqrt{3}-1\right)x+5\) khi \(x=\sqrt{3}+1\) thì y nhận giá trị là
A. 5
B. 7
C .9
D.\(9+2\sqrt{3}\)
Cho hàm số y = ax + 3. Hãy xác định hệ số a trong mỗi trường hợp sau:
a) Đồ thị của hàm số song song với đường thẳng y = -2x.
b) Khi x = 2 thì hàm số có giá trị y = 7.
a) Theo đề bài ta có b ≠ b' (vì 3 ≠ 0)
Vậy đồ thị của hàm số y = ax + 3 song song với đường thẳng y = -2x khi và chỉ khi a = a' tức là:
a = -2.
Hàm số có dạng y = 2x + 3.
b) Thay x = 2, y = 7 vào hàm số y = ax + 3 ta được:
7 = a.2 + 3 => a = 2
Hàm số có dạng y = 2x + 3.
Cho hàm số y=ax+3 .Hãy xác định hệ số của a trong mỗi trường hợp sau: a, Đồ thị của hàm số sông song với đường thẳng y=-4x
b, Khi x=2 thì hàm số có giá trị y=7
a) Do đồ thị của hàm số song song với đường thẳng y = -4x nên a = -4
b) Thay x = 2; y = 7 vào hàm số ta có:
2a + 3 = 7
⇔ 2a = 7 - 3
⇔ 2a = 4
⇔ a = 4 : 2
⇔ a = 2
a: Để (d): y=ax+3//y=-4x thì a=-4
b: Thay x=2 và y=7 vào (d), ta được:
2a+3=7
=>2a=4
=>a=2
Cho hàm số f ' x = x - 2 2 x 2 - 4 x + 3 với mọi x ∈ ℝ . Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = f x 2 - 10 x + m + 9 có 5 điểm cực trị?
A. 17.
B. 18.
C. 15.
D. 16.
Câu 9: Cho hàm số y = f(x) = 2x - 1. Tại x = 2 , f(2) có giá trị là
A. 3 B. 2 C. 1 D. 4
Cho hàm số y=(3m-4)x\(^2\) với m\(\ne\)\(\dfrac{4}{3}\). Tìm các giá trị của tham số m để hàm số :
a) Đạt giá trị lớn nhất là 0
b) Đạt giá trị nhỏ nhất là 0
a) Để m đạt giá trị lớn nhất là 0 thì \(y=\left(3m-4\right)x^2\le0\) ⇔ \(3m-4\le0\)
⇔ \(m\le\dfrac{4}{3}\) nhưng theo điều kiện
thì m ≠ \(\dfrac{4}{3}\)
➤ Để m đạt giá trị lớn nhất là 0 thì \(m< \dfrac{4}{3}\)
b) Để m đạt giá trị nhỏ nhất là 0 thì \(y=\left(3m-4\right)x^2\ge0\) ⇔ \(3m-4\ge0\)
⇔ \(m\ge\dfrac{4}{3}\) nhưng theo điều kiện
thì m ≠ \(\dfrac{4}{3}\)
➤ Để m đạt giá trị nhỏ nhất là 0 thì \(m>\dfrac{4}{3}\)
Cho hàm số y = ax + 3. Hãy xác định hệ số a trong mỗi trường hợp sau:
Khi x = 2 thì hàm số có giá trị y = 7.
Thay x = 2, y = 7 vào hàm số y = ax + 3 ta được:
7 = a.2 + 3 => a = 2
Hàm số có dạng y = 2x + 3.