Cho \(\Delta\)ABC vuông tại A.Biết \(\frac{AB}{12}\)=\(\frac{AC}{5}\)và 5AB+8AC=100 cm.Tính BC
cho tam giác ABC vuông tại A .Tính cạnh AB nếu biết:a,AB/3=AC/4 và AB+AC=14cm
b,AB/12=AC /5 và 5AB+8AC=100cm
AB/AC=3/4 và 4AB+3AC÷25căn bậc 2
1.Cho \(\Delta\)ABC vuông cân ở A.Biết AB=AC=4cm
a,Tính BC
b,Từ A kẻ AD\(\perp\)BC
CMR:D là trung điểm của BC
c,Từ D kẻ DE\(\perp\)AC
CMR:\(\Delta\)AED vuông cân
d,Tính AD
2.Cho \(\Delta\)ABC vuông ở A có \(\frac{AB}{AC}=\frac{5}{12}\)và AC-AB=14cm.Tính các cạnh của \(\Delta\)ABC
a) Xét \(\Delta ABC\) , có :
BC2 = AB2 + AC2 (định lí Py-ta-go )
BC2 = 42 + 42
BC2 = 32
BC = \(\sqrt{32}\)
b) Xét \(\Delta ABD\) và \(\Delta ACD\) , có :
AB = AC ( \(\Delta ABC\) vuông cân tại A )
\(\widehat{ABD}=\widehat{ACD}\) ( \(\Delta ABC\) vuông cân tại A )
\(\widehat{ADB}=\widehat{ADC}=90^0\)
=> \(\Delta ABD=\Delta ACD\) ( cạnh huyền - góc nhọn )
=> BD = DC ( 2 cạnh tương ứng )
=> D là trung điểm của BC )
Cho \(\Delta\)ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và \(AC=16cm\). Tính độ dài các cạnh \(AB=BC\)
bài 1: cho ABC vuông tại A có AB<AC. Kể AH song song BC(HE,BC) cho biết AH=12 cm,BH=9 cm,AC=20 cm.Tính độ dài AB và HC
1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)
a. So sánh IN và IP
b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.
2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.
3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)
a. CM: CD>AB
b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH
4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?
5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR
a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông
b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông
c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông
d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông
Tui đag cần gấp mg mn giúp đỡ ạ ! Câu1 Cho tam giác ABC vuông tại A, đường cao AH a)Cho AH bằng 16,BH bằng 25 . Tính AB,AC,BC,CH b)Cho AB bằng 12,BH bằng 6.Tính AH,AC,BC,CH Câu 2 Cho tam giác ABC vuông tại A.Biết rằng AB/AC=5/6 đường cao AH=30cm. Tính HB và HC
Câu 2:
AB/AC=5/6
=>HB/HC=25/36
=>HB/25=HC/36=k
=>HB=25k; HC=36k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>900k^2=900
=>k=1
=>HB=25cm; HC=36cm
Cho tam giác ABC nhọn và điểm M thuộc cạnh Ab sao cho \(\frac{AM}{MB}=\frac{1}{2}\)
a,Biết AB= 12 cm.TÍnh AM,MB
b, Kẻ MN//AC ( N thuộc AC ) .Tính tỉ số \(\frac{AN}{AC}\)
c, Vẽ hình bình hành BMNP ( P thuộc BC ).Cho BC=27,3 cm.Tính BP
Cho tam giác ABC vuông tại A.Biết \(\frac{AB}{AC}=\frac{5}{7}\),đường cao AH=15cm
a)Tính HB,HC
b)Tính chu vi tam giác ABC
a) Ta thấy: \(AB.AC=BC.AH\)
\(\Leftrightarrow AB^2.AC^2=BC^2.AH^2\)
\(\Leftrightarrow AH^2=\frac{AB^2.AC^2}{BC^2}\)
\(\Leftrightarrow AH^2=\frac{AB^2.AC^2}{AB^2+AC^2}\)
\(\Leftrightarrow\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2.AC^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
Ta có: \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB:AC=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)
Áp dụng công thức trên: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{15^2}=\frac{1}{\frac{25}{49}AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{49}{25}.\frac{1}{AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{1}{AC^2}\left(\frac{49}{25}+1\right)\)
\(\Rightarrow\frac{1}{225}=\frac{1}{AC^2}.\frac{74}{25}\Rightarrow\frac{1}{AC^2}=\frac{1}{225}.\frac{25}{74}=\frac{1}{666}\Rightarrow AC^2=666\Rightarrow AC=\sqrt{666}=3\sqrt{74}cm\)
Do đó: \(AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}cm\)
Xét tam giác ABH có: \(AH^2+BH^2=AB^2\Leftrightarrow15^2+BH^2=\left(\frac{15\sqrt{74}}{7}\right)^2\Leftrightarrow BH^2=\frac{16650}{49}-225=\frac{5625}{49}\)
\(\Rightarrow BH=\frac{\sqrt{5625}}{\sqrt{49}}=\frac{75}{7}cm\)
Xét tam giác ACH có: \(AH^2+HC^2=AC^2\Leftrightarrow15^2+HC^2=666\Leftrightarrow HC^2=666-225=441\)
\(\Rightarrow HC=\sqrt{441}=21cm\)
Vậy: \(BH=\frac{75}{7}cm\) và \(HC=21cm\)
b) Chu vi tam giác ABC là: \(AB+AC+BC=\frac{15\sqrt{74}}{7}+3\sqrt{74}+21+\frac{75}{7}\approx76cm\)
Vì tam giác ABC vuông tại A => góc B + góc C = 90o
Vì tam giác HAC vuông tại H => góc HAC + góc C = 90o
=> góc HAC = góc B
Xét tam giác HAC và tam giác HBA có:
góc HAC = góc B (cmt)
góc AHC = góc AHB (=90o)
=> tam giác HAC đồng dạng với tam giác HBA (TH3)
=> \(\frac{AC}{AB}=\frac{AH}{BH}=\frac{HC}{AH}=\frac{7}{5}\)
=> \(HC=15.\frac{7}{5}=21\left(cm\right);HB=15.\frac{5}{7}=\frac{75}{7}\left(cm\right)\)
Sau đó tính AB; AC; BC. Ngại là lắm, làm nốt nhá ._.
a) Ta có: \(\frac{AB}{AC}=\frac{5}{7}\Rightarrow AB:AC=\frac{5}{7}\Rightarrow AB=\frac{5}{7}AC\)
Áp dụng công thức: \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{15^2}=\frac{1}{\frac{25}{49}AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{49}{25}.\frac{1}{AC^2}+\frac{1}{AC^2}\Leftrightarrow\frac{1}{225}=\frac{1}{AC^2}\left(\frac{49}{25}+1\right)\)
\(\Rightarrow\frac{1}{225}=\frac{1}{AC^2}.\frac{74}{25}\Rightarrow\frac{1}{AC^2}=\frac{1}{225}.\frac{25}{74}=\frac{1}{666}\Rightarrow AC^2=666\Rightarrow AC=\sqrt{666}=3\sqrt{74}cm\)
Do đó: \(AB=\frac{5}{7}.3\sqrt{74}=\frac{15\sqrt{74}}{7}cm\)
Suy ra: \(CH=21cm\) và \(BH=\frac{75}{7}cm\) ( Áp đụng định lý Pi - ta go )
b) Chu vi tam giác ABC là: AB + AC + BC = \(\frac{15\sqrt{74}}{7}+3\sqrt{74}+21+\frac{75}{7}\approx76cm\)
Cũng k biết đúng k nữa =.=
1)Cho tam giác ABC vuông tại A.Biết góc B=60 độ;BC=4.Tính AB,AC,chiều cao AH
2)Cho tam giác ABC vuông tại A.Biết AB=2;góc C=45 độ.Tính AC,BC,chiều cao AH
3)Cho tam giác ABC vuông tại A,Biết AB=3;AC=4.Tính sin C,tan B
Giải giúp mình ạ