Bài 5: Cho tam giác ABC vuông tại A có diện tích S= 24(cm2), đường trung tuyến CM=\(\sqrt{73}\)(cm). Tính độ dài các cạnh của tam giác ABC.
Bài 1: Cho hình thoi ABCD có cạnh a=30,1975 cm và góc ABC=60 độ . G là trọng tâm tam giác
ABC . Tính diện tích tứ giác AGCD
Bài 2: Cho tam giác ABC vuông tại A có AB=6,251 cm và góc B=56 độ .
a, Tính BC, AC và góc C
b, Tính độ dài đường cao AH và diện tích tam giác ABC
c, Tính độ dài đường trung tuyến AM và phân giác AD của tam giác ABC
Cho tam giác ABC có đường trung tuyến CM, AN, BP cắt nhau tại G. Giả sử AB=3,2 ; CM=2,4 ; AN=1,8. Hãy tính
a, Đường cao GH của tam giác AGM
b, diện tích tam giác ABC
c, Tính độ dài đường trung tuyến còn lại của tam giác ABC
d, Tính độ dài cạnh còn lại của tam giác ABC
Tính diện tích của tam giác ABC vuông tại A có các độ dài đường trung tuyến AM = 3 cm; BN = 4 cm
cho tam giác ABC vuông tại A có cạnh AB=5 cm, cos=0,5cm. Hảy tính các cạnh, các góc và độ dài trung tuyến của AM của tam giác ABC
3. Cho tam giác ABC vuông tại A có AD là tia phân giác .Tính các cạnh của tam giác khi :
a) AD = 4x , DC = 5x
b) BD = 2\(\sqrt{3x}\) , cạnh AM vuông góc với BD
4.Cho tam giác ABC vuông tại A , AB = 3a , AC = 4a , đường cao AH , có điểm I thuộc cạnh AB sao cho \(\frac{IB}{IA}\)= \(\frac{1}{2}\). Cạnh CI cắt AH tại E . Tính cạnh CE
5. Tính diện tích tam giác vuông có chu vi 72 cm , biết hiệu độ dài trung tuyến và đường cao ứng với cạnh huyền là 7 cm
a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ
cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2
TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2 ÁP DỤNG PITA GO TÌM RA CẠNH bc
b,
Câu 1:Tính độ dài cạnh AB của tam giác ABC vuông tại A có hai đường trung tuyến AM và BN lần lượt bằng 6 cm và 9 cm.
Câu 2: Cho hình thang cân ABCD, đáy lớn CD=10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính độ dài đường cao của hình thang cân đó.
Câu 3: Cho tam giác ABC cân tại A, đường cao ứng với cạnh đáy có độ dài 15,6 cm, đường cao ứng với cạnh bên dài 12 cm. Tính độ dài cạnh đáy BC.
Câu 4: Cho tam giác ABC vuông tại A, AB<AC; gọi I là giao điểm các đường phân giác, M là trung điểm BC . Cho biết góc BIM bằng 90°. Tính BC:AC:AB.
Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
=> AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.
Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago) mà BN=9cm (gt)
=>AN2+AB2=81 Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81 (1)
Tam giác ABC vuông tại A có: AC2+AB2=BC2 => BC2 - AB2 = AC2 (2)
Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC2 - AB2)+AB2=81 mà BC=12(cmt)
=> 36 - \(\frac{1}{4}\)AB2+AB2=81
=> 36+\(\frac{3}{4}\)AB2=81
=> AB2=60=>AB=\(\sqrt{60}\)
C2
Cho hình thang cân ABCD có đáy lớn CD = 1
C4
Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath
Cho tam giác ABC vuông tại A, đường trung tuyến AM,BE,CF. Biết AB=6 cm, AC=8 cm. Tính độ dài các đường trung tuyến trong tam giác ABC
Cho tam giác ABC vuông tại A có cạnh AC= 8cm, đường cao AH=4,8 cm. Hãy tính độ dài các cạnh và diện tích của tam giác ABC.
Giup minh voi ạ!!!!
Xét tam giác HAC vuông tại H có
HC=\(\sqrt{AC^2-AH^2}=\sqrt{8^2-4,8^2}=6,4\)(cm)
Xét tam giác ABC có AH là đường cao
\(\Rightarrow AH^2=HC.BH\Rightarrow BH=\dfrac{AH^2}{HC}=\dfrac{4,8^2}{6,4}=3,6\)(cm)
=> BC=BH+HC=6,4+3,6=10(cm)
Ta có\(AH.BC=AC.AB\Rightarrow AB=\dfrac{AH.BC}{AC}=\dfrac{4,8.10}{8}=6\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.8.6=24\left(cm^2\right)\)
cho tam giác abc vuông tại a có ab=7cm, ac=24 cm tính độ dài đường trung tuyến am
Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
Vì AM là tt ứng ch nên \(AM=\dfrac{1}{2}BC=\dfrac{25}{2}\left(cm\right)\)
Lời giải:
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{7^2+24^2}=25$ (cm)
Đối với tam giác vuông thì độ dài đường trung tuyến ứng với cạnh huyền bằng 1 nửa cạnh huyền
CM tính chất trên bạn có thể tham khảo tại đây:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-m-la-trung-diem-cua-bc-chung-minh-bc-2am-minh-chua-hoc-3939tinh-chat-duong-trung-tuyen-trong-tam-giac-vuong3939-nen-giai-bth-giup-mik-a.2592190724387
Vậy $ AM=\frac{BC}{2}=12,5$ (cm)
\(AM=\dfrac{\sqrt{AB^2+AC^2}}{2}=\dfrac{25}{2}=12.5\left(cm\right)\)
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH và AH = 12 cm, BC = 25 cm.
a, Tìm độ dài các đoạn thẳng BH, CH, AB và AC
b, Vẽ trung tuyến AM. Tìm số đo của A M H ^
c, Tính diện tích tam giác AHM
a, Tìm được BH=9cm, CH=16cm, AB=15cm, và AC=20cm
b, Tìm được A M H ^ ≈ 73 , 74 0
c, S A H M = 21 c m 2