\(AM^2+AC^2=CM^2=73\)
\(S=\frac{1}{2}AB.AC=AM.AC=24\Rightarrow AM=\frac{24}{AC}\)
\(\Rightarrow\left(\frac{24}{AC}\right)^2+AC^2=73\)
\(\Leftrightarrow AC^4-73AC^2+576=0\Rightarrow\left[{}\begin{matrix}AC^2=64\\AC^2=9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}AC=8\Rightarrow AM=3\Rightarrow AB=6\Rightarrow BC=10\\AC=3\Rightarrow AM=8\Rightarrow AB=16\Rightarrow BC=\sqrt{265}\end{matrix}\right.\)