Cho parapol (P) :y=\(\frac{x^2}{4}\) và điểm A(\(\frac{3}{2}\) ;-1)
a. Viết phương trình đường thẳng (D) qua A và có hệ số góc m.
b. Tìm m sao cho (D) tiếp xúc với (P). Tính tọa độ tiếp điểm.
cho parapol (P): y=\(\frac{1}{2}x^2\) và đường thẳng (d):y=x+m
tìm m để đường thẳng (d) cắt parapol (P) tại hai điểm phân biệt có hoành độ lần lượt là x1:x2 thỏa mãn \(x1^2+x2^2=5m\)
cho P: y = \(\frac{1}{4}x^2\) và đường thẳng (d): y= \(\frac{-1}{2}x\) + 2
a) Vẽ (P) và (d)
b) Tìm tọa độ giao điểm (P) và (d)
c) Tìm tọa độ điểm M trên Parapol (P) sao cho tại M đường tiếp tuyến ( tiếp xúc) của (P) song song với (d)
>>>> Làm hộ em câu cuối ạ <<<<
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{1}{4}x^2+\dfrac{1}{2}x-2=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-8=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-4;2\right\}\\y\in\left\{4;1\right\}\end{matrix}\right.\)
cho parapol y=x^2 và (d): y=mx+2
tìm m để p cắt d tại 2 điểm phân biệt A và B sao cho tổng khoảng cách từ A và B đến trục Oy bằng 3
Cho đường thẳng (d) y=x+m-1 và parapol(P) y=-x\(^2\)
a. Vẽ (P) và (d) khi m=2
b. Tìm m để đường thẳng (d) cắt (P) tại 2 điểm phân biệt có hoành độ lần lượt là x\(_1\),x\(_2\) thỏa mãn
4(\(\frac{1}{x_1}+\frac{1}{x_2}\))+x\(_1\).x\(_2\)+3=0
Bài 1: Trong mặt phẳng Oxy cho parapol (P): y=\(\frac{1}{2}\)x2
Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1)
Bài 2: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3)
HELP!!!
Bài 1: Trong mặt phẳng Oxy cho parapol (P): y=\(\frac{1}{2}\)x2
Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1)
Bài 2: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3)
HELP!!!
Bài 1: Trong mặt phẳng Oxy cho parapol (P): y=\(\frac{1}{2}\)x2
Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1)
Bài 2: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3)
HELP!!!
Bài 1: Trong mặt phẳng Oxy cho parapol (P): y=\(\frac{1}{2}\)x2
Trên (P) lấy điểm A có hoành độ xA =-2. Tìm tọa độ điểm M trên trục Ox sao cho |MA-MB| đạt giá trị lớn nhất, biết B(1;1)
Bài 2: Tìm a và b để đường thẳng (d): y=(a-2)x+b có hệ số góc bằng 4 và đi qua điểm M(1;-3)
HELP!!!
\(A\left(-2;2\right)\) ; \(B\left(1;1\right)\Rightarrow\) A và B nằm cùng phía so với Ox
Trong tam giác ABM, áp dụng BĐT tam giác ta có:
\(T=\left|MA-MB\right|\le AB\Rightarrow T_{max}=AB\) khi A;B;M thẳng hàng hay M là giao điểm của đường thẳng AB và Ox
Gọi pt AB: \(y=ax+b\Rightarrow\left\{{}\begin{matrix}-2a+b=2\\a+b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{1}{3}\\b=\frac{4}{3}\end{matrix}\right.\) \(\Rightarrow y=-\frac{1}{3}x+\frac{4}{3}\)
Tọa độ M là nghiệm của hệ: \(\left\{{}\begin{matrix}y=-\frac{1}{3}x+\frac{4}{3}\\y=0\end{matrix}\right.\) \(\Rightarrow M\left(4;0\right)\)
Bài 2:
Đường thẳng có hsg bằng 4 \(\Rightarrow a-2=4\Rightarrow a=6\Rightarrow y=4x+b\)
Do (d) qua M nên \(4.1+b=-3\Rightarrow b=-7\)
Đề luyện thi HSG số 5
Bài 1 (3 điểm) Thực hiện phép tính:
a) \(A = (0,3(4) + 1,(62) : 14\frac{7}{11} - \frac{\frac{1}{2} + \frac{1}{3}}{0,8(5)} : \frac{90}{11}) . \frac{315}{106} : \frac{1}{2007}\)
b) \(A = (\frac{\frac{4}{15} + \frac{4}{35} + \frac{4}{63} +...+ \frac{4}{399}}{\frac{3}{8.11} + \frac{3}{11.14} +...+ \frac{3}{197.200}}) . \frac{201420142014}{201520152015}\)
c) \(C = 1 + \frac{1}{2} . (1 + 2) + \frac{1}{3} . (1 + 2 +3) +\frac{1}{4} . (1 + 2 + 3 + 4) + ...+ \frac{1}{2015} . (1 + 2 + 3 +...+2015)\)
Bài 2 (10 điểm) Tìm x, y, z biết:
a) \((1 - x) . (2x + 3) < 0\)
b) \((2x - 1)^4 = 16\)
c) \((2x + 1)^4 = (2x + 1)^6\)
d) \(\frac{x - 1}{-15} = \frac{-60}{x-1}\)
e) \(-4x . (x - 5) - 2x . (8 - 2x) = -3\)
f) \(3x = 27; 7y = 5z \) và \(x - 7 + z = 32\)
g) \(\frac{2x + 1}{5} = \frac{3y - 2}{7} = \frac{2x + 3y - 1}{6x}\)
h) \(\frac{x+6}{2002} + \frac{x + 5}{2003} + \frac{x + 4}{2004} = \frac{x + 3}{2005} + \frac{x + 2}{2006} + \frac{x + 1}{2007}\)
Bài 3 (1,5 điểm) Bốn lớp 7A, 7B, 7C, 7D đi lao động trồng cây. Biết rằng số cây trồng của bốn lớp 7A, 7B, 7C, 7D lần lượt tỉ lệ với 0,8; 0,9; 1; 1,1 và lớp 7B trồng nhiều hơn lớp 7A là 5 cây. Tính số cây mỗi lớp đã trồng.
Bài 4 (1,5 điểm)
a) Tìm các số a1, a2, a3,..., a100, biết \(\frac{a_{1} - 1}{100} = \frac{a_{2} - 2}{99} = \frac{a_{3} - 3}{98} =...= \frac{a_{100} - 100}{1}\) và \(a_{1} + a_{2} + a_{3} +...+ a_{100} = 10100\)
b) Biết rằng: \(1^4 + 2^4 + 3^4 +...+ 10^4 = 25333\). Tính \(S = 2^4 + 4^4 + 6^4 +...+ 20^4\)
Bài 5 (1,5 điểm) Cho 3 số x, y, z là 3 số khác 0 thỏa mãn điều kiện: \(\frac{y + z -x}{x} = \frac{z + x -y}{y} = \frac{x +y - z}{z}\). Hãy tính giá trị của biểu thức \(A = (1 + \frac{x}{y})(1 + \frac{y}{x})(1 + \frac{z}{x})\)
Bài 6 (3,0 điểm) Cho \(\Delta ABC\), gọi M và N theo thứ tự là trung điểm của AC và AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB, trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh rằng:
a) Ba điểm E, A, D thẳng hàng
b) A là trung điểm của ED
Bài easy quá mà!
4. a) Áp dụng tỉ dãy số bằng nhau:
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}\)
\(=\frac{\left(a_1+a_2+...+a_{100}\right)-\left(1+2+...+100\right)}{100+99+...+2+1}=\frac{5050}{5050}=1\)
Suy ra: \(a_1-1=100\Leftrightarrow a_1=101\)
\(a_2-2=99\Leftrightarrow a_2=101\)
.......v.v...
\(a_{100}-100=1\Leftrightarrow a_{100}=101\)
Do đó: \(a_1=a_2=a_3=...=a_{100}=101\)
Bài 5/
Theo t/c dãy tỉ số bằng nhau,ta có: \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)\(=\frac{2x}{x}\)
Suy ra:
\(\frac{y+z-x}{x}=\frac{2x}{x}\Leftrightarrow y+z-x=2x\Rightarrow x=y=z\) (vì nếu \(x\ne y\ne z\Rightarrow y+z-x\ne2x\) "không thỏa mãn")
Thay vào A,ta có: \(A=\left(1+\frac{x}{x}\right)\left(1+\frac{y}{y}\right)\left(1+\frac{z}{z}\right)=2.2.2=8\)
Bài 6a) chính là bài thi học kì của mình hôm qua đấy! Bạn nhớ viết thường hoặc viết hoa giống như mình nhé (chỗ mấy cái góc này nó đó.Dễ nhầm lẫn lắm)
a) Gọi O là giao điểm của EC và DB.Qua O kẻ d // ED
Do d // ED (do cách dựng) suy ra \(\widehat{dOA}+\widehat{EAO}=180^o\) (hai góc trong cùng phía) (1)
Mặt khác cũng do d // ED,suy ra \(\widehat{dOA}=\widehat{DAO}\) (so le trong) (2)
Thay (2) và (1) suy ra \(\widehat{DAO}+\widehat{EAO}=180^o\Rightarrow\) E,A,D thẳng hàng