Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Van Khanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2021 lúc 20:04

a: Xét tứ giác AMCK có 

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

phạm bình minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 19:16

a: Xét tứ giác AMCK có

I là trung điểm của AC
I là trung điểm của MK

Do đó:AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

b: Để AMCK là hình vuông thì AM=CM

=>AM=BC/2

hay ΔABC vuông tại A

Nguyễn Thành Danh
Xem chi tiết
ly tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2022 lúc 10:40

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đo: AMCK là hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

=>AB=MK

c: Để AMCK là hìh vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

d: P=(5+5+6)/2=8

\(S=\sqrt{8\left(8-6\right)\left(8-5\right)\left(8-5\right)}=\sqrt{16\cdot9}=12\left(cm^2\right)\)

Hienmino
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 10:13

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCKlà hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

Hải Yến
Xem chi tiết
Ari chan
Xem chi tiết
Thanh Hoàng Thanh
26 tháng 1 2022 lúc 16:00

a) Xét tứ giác AMCK:

I là trung điểm của AC (gt).

I là trung điểm của MK (K là điểm đối xứng với M qua I).

Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)

=> Tứ giác AMCK là hình chữ nhật (dhnb).

b) Xét tam giác ABC cân tại A: AM là đường cao (gt).

=> AM là trung tuyến (Tính chất tam giác cân).

=> M là trung điểm của BC.

=> BM = MC.

Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).

          BM = MC (cmt).

=> AK = MC = BM.

Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).

=> AK // BM.

Xét tứ giác AKMB:

AK // BM (cmt).

AK /= BM (cmt).

=> Tứ giác AKMB là hình bình hành (dhnb).

c) Tứ giác AMCK là hình vuông (gt).

=> AK = AM (Tính chất hình vuông).

Mà AK = BM (cmt).

=> AM = BM = AK.

Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).

=> AM = BM = AK = \(\dfrac{1}{2}\) BC.

Xét tam giác ABC cân tại A: 

AM = \(\dfrac{1}{2}\) BC (cmt).

=> Tam giác ABC vuông cân tại A.

Tiểu Thư Họ Phạm
Xem chi tiết
Cô bé bánh bèo
17 tháng 11 2016 lúc 16:21

bài ở đâu vậy bà

Cô Bé Bán Diêm
17 tháng 11 2016 lúc 20:20

chắc của chị ngọc anh đúng ko Tiểu Thư Họ Phạm

Switch Starding
Xem chi tiết
Phùng Khánh Linh
22 tháng 11 2016 lúc 11:32

Hình học lớp 8

a. Tứ giác AMCK là HBH ( vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường ) và có góc M = 900 ( vì AM là đường trung trực của D cân cũng là đường cao) nên tứ giác AMCK là HCN.

b. Diện tích của hình chữ nhật biết AM = 12cm, MC = 5cm là :

SAMCK = 12. 5 = 60cm2

c. Để AMCK là HV thì cần AM = MC

khi đó ΔABC phải là tam giác vuông cân tại A để đường trung trực ứng với cạnh huyền bằng nửa cạnh huyền hay AM = MC.

Hải Ninh
22 tháng 11 2016 lúc 12:11

HÌNH VẼ NHƯ CỦA BẠN PHÙNG KHÁNH LINH NHÉ!!!!!1

a) Xét tứ giác AKCM có:

MI = MK (K là điểm đối xứng với M qua I (gt))

IA = IC (I là trung điểm AC (gt))

AC giao MK tại I

\(\Rightarrow\)AMCK là hình bình hành (dhnb) (1)

\(\Delta ABC\) cân tại A (gt)

AM là đường trung tuyến (gt)

\(\Rightarrow\) AM cũng là đường cao (t/c)

\(\Rightarrow\)\(\widehat{AMK} = 90^O\)(2)

Từ (1)(2) \(\Rightarrow\) AKCM là hình chữ nhật (dhnb)

b) Ta có công thức tính diện tích hình chữ nhật là:

\(S=a\cdot b\)

trong đó a là chiều dài (=AM=12cm)

b là chiều rộng (=MC=5cm)

\(\Rightarrow\) SAMCK = 12 * 5 = 60 (cm2)

c) Để AMCK là hình vuông

\(\Leftrightarrow\) AMCK vừa là hình chữ nhật, vừa là hình thoi

mà AMCK là hình chữ nhật (cmt)

Vậy ta cần tìm điều kiện để AMCK là hình thoi

Để AMCK là hình thoi

\(\Leftrightarrow\) AM = MC

\(MC=\frac{1}{2}BC\) (AM là đường trung tuyễn của \(\Delta ABC\)(gt))

\(\Leftrightarrow\) \(AM=\frac{1}{2}BC\)

\(\Leftrightarrow\) \(\Delta ABC\) vuông tại A (tính chất về đường trung tuyến ứng với cạnh huyền)

\(\Leftrightarrow\)\(\Delta ABC\) vuông cân tại A

Vậy muốn tứ giác AMCK là hình vuông thì \(\Delta ABC\) phải vuông cân tại A

 

Ngân Ngây Ngô
Xem chi tiết