1. Cho tg ABC vuông tại A và AB<AC. Kẻ AH vuông góc với BC tại H. Trên tia CH lấy K sao cho AK=HB.CMR:
a, Tg ABK cân
b, góc HAK=ACB
c, Kẻ CEvuông góc với AK tại E; KF vuông góc với AC tại F. CF cắt AH tại M.CMR AC=CM ; M, K, F thẳng hàng
Cho tam giác (tg) ABC cân tại A. Vẽ AM là đường trung tuyến của tg ABC (M thuộc BC).
a) CM tg ABC = tg ACM và góc BAM = góc CAM.
b) Trên tia đối của tia AB lấy điểm D sao cho AD=AB.
CM tg ACD cân và CD//AM.
c) Vẽ ME vuông góc AB tại E, AH vuông góc CD tại H. CM MH vuông góc ME.
a) cm tg ABM = tg ACM moi dung phai ko ban
Cho tg ABC. M là trung điểm BC. Vẽ tg ABD vuông cân tại D ở ngoài tg ABC. Đường thẳng qua A vuông góc với AB cắt đt qua C song song với MD tại E. Đt AB cắt CE tại P và DM tại Q. CMR: Q |•| BP
1. Cho tg ABC cân tại A , đường cao AH .Biết AB =5cm ; BC = 6cm.
a) Tính độ dài các đoạn thẳng BH , AH
b) Gọi G là trọng tâm của tg ABC . C/m rằng ba điểm A , G , H thẳng hàng .
2. Cho tg ABC cân tại A . Gọi M là trung điểm của cạnh BC .
a) C/m : tg ABM = tg ACM
b) Từ M vẽ MH vuông góc với AB và MK vuông góc với AC , C/m BH = CK.
c) Từ B vẽ BP vuông góc với AC , BP cắt MH tại I.C/m tg IBM cân.
3. Cho tg ABC cân tại A ( góc A < 90 độ) , vẽ BD vuông góc với AC và CE vuông góc AB .Gọi H là giao điểm của BD và CE.
a) C/m : tg ABD = tg ACE
b) C/m tg AED cân
c) C/m AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB.C/m góc ECB = góc DKC.
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!!!!!!!!!!!!
cho tam giác ABC vuông tại A, B = 60 và AB = 5cm. Tpg góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a. CM Tg ABD = Tg EBD
b. CM: Tg ABE là tg đều
c. Tính độ dài cạnh BC
cho tg ABC vuông tại A với AB=6cm BC=10cm vẽ hình và giả thiết kết luận
a. tính độ dài đoạn thẳng AC
b. trên tia đối ab lấy điểm d sao cho AB=AD chứng minh tg ABC=tg ADC từ đó suy ra tg BCD cân
c. trên AC lấy điểm E sao cho AE= 1/3 AC. cm DE đi qua trung điểm I của BC
d. chứng minh DI+3/2 DC>DB
a: \(AC=\sqrt{10^2-6^2}=8\left(cm\right)\)
b: Xét ΔABC vuông tại A và ΔADC vuông tại A có
AB=AD
AC chung
Do đó;ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
c: Xét ΔCBD có
CA là đường trung tuyến
CE=2/3CA
Do đó: E là trọng tâm của ΔCBD
=>DE đi qua trung điểm của BC
a: AC=√10mũ 2−6mũ2=8(cm)
b: Xét ΔABC vuông tại A ΔADC vuông tại A có
AB=AD
AC chung
Do đó;ΔABC=ΔADC
Suy ra: CB=CD
hay ΔCBD cân tại C
c: Xét ΔCBD có
CA là đường trung tuyến
CE=2/3CA
Do đó: E là trọng tâm của ΔCBD
=>DE đi qua trung điểm của BC
a, Xét tam giác AHE và ABH có :
\(+,\widehat{AEH}=\widehat{AHB}=90^0\)
\(+,\widehat{HAB}chung\)
Vậy tam giác \(AHE~ABH\left(g.g\right)\)
b,
Theo hệ thức lượng trong tam giác vuông ta có :
\(AH^2=AE.AB=AF.AC\)
Vậy \(\frac{AE}{AC}=\frac{AF}{AB}\left(1\right)\)
Xét tam giác AEF và ACB có :
\(+,\)góc A chung
\(+,\left(1\right)\)
\(\Rightarrow\Delta AEF~ACB\left(c.g.c\right)\)
c, Tự làm nhé
Bài 1: Cho tg ABC vuông tại A, từ trung điểm K của BC kẻ đg thẳng vuông góc AK cắt AB và AC lần lượt tại D và E. I là trung điểm của DE. Chứng minh :
a) AI vuông góc với BC
b) DE > hoặc = BC
Bài 2: Cho tg ABC, trên cạnh AB và AC lần lượt lấy M và N ki trùng với đỉnh của tg. Chứng minh BC lớn hơn MN.
Mik đang cần gấp ai lm đúng mik tick cho. Help me, plaese
giải cho mik ik mình đang cần gấp
Tham khảo link này nha
https://olm.vn/hoi-dap/detail/254190229540.html
Cho tam giác ABC vuông tại A có AB=12, AC=16, đường cao AH (H thuộc BC). Tia p/g của góc ABC lần lượt cắt AH và AC tại M và N. Đường thẳng qua H song song với BN cắt AC tại I.
1) CM tg ABC đồng dạng với tg HBA
2) Tính độ dài các cạnh BC, AH, BH
3) CM tg AMN cân tại A và AM.AB=MH.BC
4)CM AM^2=NI.NC
1: Xet ΔABC và ΔHBA có
góc ABC chung
góc BAC=góc BHA
=>ΔABC đồng dạng với ΔHBA
2: \(BC=\sqrt{12^2+16^2}=20\)
AH=16*12/20=9,6
BH=12^2/20=7,2
3: góc AMN=góc HMB=90 độ-góc CBN
góc ANM=90 độ-góc ABN
mà góc CBN=góc ABN
nên góc AMN=góc ANM
=>ΔAMN cân tại A
Cho tam giác ABC ( AB < AC). Vẽ đường cao AH. Kẻ HE vuông góc với AB và HF vuông góc với AC ( E thuộc AB, F thuộc AC)
a) TG AEH dd TG AHB
b) AE.AB=AH^2 VÀ AE.AB = AF.AC
c) TG AFE dd TG ABC
d) MB.MC = ME.MF ( Biết đường thẳng EF cắt đường thẳng BC tại M )
cứu mik phần d vs mn ơiiiiii
a: Xét ΔAEH vuông tại E và ΔAHB vuông tại H có
góc EAH chung
=> ΔAEH đồng dạng với ΔAHB
b: ΔAHB vuông tại H có HE vuông góc AB
nên AH^2=AE*AB
ΔAHC vuông tại H
mà HF là đường cao
nên AF*AC=AH^2=AE*AB
c: AE*AB=AF*AC
=>AE/AC=AF/AB
=> ΔAEF đồng dạng với ΔACB
d: Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=> ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME*MF=MB*MC
cho tg ABC vuông cân (AB=AC) tia phân giác góc B và C cắt AC và AB lần lươt tại E và D
a cmr BE=CD;AD=AE
b gọi I là giao điểm của BE và CD. AI cắt BC tại M cmr tg MAB và tg MAC vuông cân
Nr bt cx ns, hơn ko.Ns mần chi ni nà. Rảnh hè.