-12x(x-5)+7x(3-x)=5
1,-12x(X-5)+7x(3-X)=5
\(-12.\left(x-5\right)+7.\left(3-x\right)=5\)
\(\Rightarrow-12x+60+21-7x=5\)
\(\Rightarrow-12x-7x=5-60-21\)
\(\Rightarrow-19x=-76\)
\(\Rightarrow x=4\)
Vậy x = 4
-12x(X-5)+7x(3-X)=5-12x(X-5)+7x(3-X)=5-12x(X-5)+7x(3-X)=5
7x(3-x)-12x(x-5)=0
\(\Leftrightarrow21x-7x^2-12x^2+60x=0\Leftrightarrow-19x^2+81x=0\)
\(\Leftrightarrow x\left(-19x+81\right)=0\Leftrightarrow x=0;x=\dfrac{81}{19}\)
Bài 1. Tìm \(x\).
a) -5(\(x\)2-3\(x\)+1)+\(x \)(1+5\(x\))=\(x-2\)
b) \(12x\)2\(-4x\)\((3x+5)\)\(=10x-17\)
c) \(-4x(x-5)+7x(x-4)-3x\)2\(=12\)
Bài 2. Tính ( Rút gọn).
a) \((x+5).(x-7)-7x.(x-3)\)
b) \(x.(x\)2\(-x-2)-(x-5).(x+1)\)
c) \((x-5).(x-7)-.(x+4).(x-3)\)
d) \((x-1).(x-2)-(x+5).(x+2)\)
Bài 1:
a) \(-5\left(x^2-3x+1\right)+x\left(1+5x\right)=x-2\)
\(\Rightarrow-5x^2+15x-5+x+5x^2=x-2\)
\(\Rightarrow16x-5=x-2\)
\(\Rightarrow16x-x=5-2\)
\(\Rightarrow15x=3\)
\(\Rightarrow x=\dfrac{15}{3}=5\)
b) \(12x^2-4x\left(3x+5\right)=10x-17\)
\(\Rightarrow12x^2-12x^2-20x=10x-17\)
\(\Rightarrow-20x=10x-17\)
\(\Rightarrow-20x-10x=-17\)
\(\Rightarrow-30x=-17\)
\(\Rightarrow x=\dfrac{-30}{-17}=\dfrac{30}{17}\)
c) \(-4x\left(x-5\right)+7x\left(x-4\right)-3x^2=12\)
\(\Rightarrow-4x^2+20x+7x^2-28x-3x^2=12\)
\(\Rightarrow-8x=12\)
\(\Rightarrow x=\dfrac{12}{-8}=-\dfrac{4}{3}\)
Bài 2:
a) \(\left(x+5\right)\left(x-7\right)-7x\left(x-3\right)\)
\(=x^2-7x+5x-35-7x^2+21x\)
\(=-6x^2+19x-35\)
b) \(x\left(x^2-x-2\right)-\left(x-5\right)\left(x+1\right)\)
\(=x^3-x^2-2x-x^2+x-5x-5\)
\(=x^3-2x^2-6x-5\)
c) \(\left(x-5\right)\left(x-7\right)-\left(x+4\right)\left(x-3\right)\)
\(=x^2-7x-5x+35-x^2-3x+4x-12\)
\(=11x+23\)
d) \(\left(x-1\right)\left(x-2\right)-\left(x+5\right)\left(x+2\right)\)
\(=x^2-2x-x+2-x^2+2x+5x+10\)
\(=4x+12\)
giải các phương trình sau
a) \(2^{x^2-2x+1}=1\)
b) \(7^{x^2+7x}=5764801\)
c) \(6^{x^2+12x}=6^{7x}\)
d) \(\left(\dfrac{1}{3}\right)^{x-1}=3^{2x-5}\)
e) \(\left(\dfrac{1}{5}\right)^{3x+5}=5^{2x+1}\)
a: \(2^{x^2-2x+1}=1\)
=>\(2^{\left(x-1\right)^2}=2^0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1
b: \(7^{x^2+7x}=5764801\)
=>\(7^{x^2+7x}=7^8\)
=>\(x^2+7x=8\)
=>\(x^2+7x-8=0\)
=>(x+8)(x-1)=0
=>\(\left[{}\begin{matrix}x+8=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\x=1\end{matrix}\right.\)
c: \(6^{x^2+12x}=6^{7x}\)
=>\(x^2+12x=7x\)
=>\(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
d: \(\left(\dfrac{1}{3}\right)^{x-1}=3^{2x-5}\)
=>\(3^{-x+1}=3^{2x-5}\)
=>-x+1=2x-5
=>-x-2x=-5-1
=>-3x=-6
=>x=2
e: \(\left(\dfrac{1}{5}\right)^{3x+5}=5^{2x+1}\)
=>\(5^{-3x-5}=5^{2x+1}\)
=>-3x-5=2x+1
=>-5x=6
=>\(x=-\dfrac{6}{5}\)
giải phương trình
a, \(\sqrt{4x-20}+3\sqrt{\dfrac{x-5}{9}}-\dfrac{1}{3}\sqrt{9x-45}=4\)
b, \(2x-x^2+\sqrt{6x^2-12x+7}=0\)
c, \(\dfrac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)
Tìm số tự nhiên x biết:
a) 25 + 7x = 144
b) 33 - 12x = 9
c) 128 - 3(x + 4) = 23
d) 71 + (726 - 3x).5 = 2246
e) 720 : [41 - (2x + 5)] = 40
f) (10 - 4x) + 120 : 8 = 16 + 1
g) x + 9x + 7x + 5x = 2244
h) (x + 1) + (x + 2) + (x + 3) +...+ (x + 100) = 5750
i) 1 + 2 + 3 +...+ x = 500500
j) 51 + 52 + 53 +...+ x = 18825
a: Ta có: \(7x+25=144\)
\(\Leftrightarrow7x=119\)
hay x=17
b: Ta có: \(33-12x=9\)
\(\Leftrightarrow12x=24\)
hay x=2
c: Ta có: \(128-3\left(x+4\right)=23\)
\(\Leftrightarrow3\left(x+4\right)=105\)
\(\Leftrightarrow x+4=35\)
hay x=31
d: Ta có: \(71+\left(726-3x\right)\cdot5=2246\)
\(\Leftrightarrow5\left(726-3x\right)=2175\)
\(\Leftrightarrow726-3x=435\)
\(\Leftrightarrow3x=291\)
hay x=97
e: Ta có: \(720:\left[41-\left(2x+5\right)\right]=40\)
\(\Leftrightarrow41-\left(2x+5\right)=18\)
\(\Leftrightarrow2x+5=23\)
\(\Leftrightarrow2x=18\)
hay x=9
f: Ta có: \(10-4x+120:8=16+1\)
\(\Leftrightarrow4x=17-25=-8\)
hay x=-2
g: Ta có: \(x+9x+7x+5x=2244\)
\(\Leftrightarrow22x=2244\)
hay x=102
h: Ta có: \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\Leftrightarrow100x+5050=5750\)
\(\Leftrightarrow100x=700\)
hay x=7
Tìm x
a) 6x(5x + 3) + 3x(1 – 10x) = 7 b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
c) (x + 1)(x + 2)(x + 5) – x2(x + 8) = 27
d) 5x(12x + 7) – 3x(20x – 5) = - 100
e) 0,6x(x – 0,5) – 0,3x(2x + 1,3) = 0,138
a) 6x(5x + 3) + 3x(1 – 10x) = 7
⇒ 30x2+18x+3x-30x2=7
⇒21x=7
⇒x=\(\dfrac{7}{21}\)
⇒x= \(\dfrac{1}{3}\)
b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
⇒15x-63x2-15+63x + 63x2-35x+36x-20=44
⇒79x-35=44
⇒79x=44+35
⇒79x=79
⇒x=1
d) 5x(12x + 7) – 3x(20x – 5) = - 100
⇒60x2+35x-60x2+15=-100
⇒35x+15=-100
⇒35x=-100-15
⇒35x=-115
⇒x=\(\dfrac{-115}{35}\)
⇒x=\(\dfrac{-23}{7}\)
a)-12x(x-5)+7x(3-x)=5 b)(-14)+x-7=-10
giup minh nhe:
-12.(x-5)+7.(3-x)=5
=>-12x-(-60)+21-7x=5
=>-12x+60+21-7x=5
=>-12x-7x=5-21-60
=>(-12-7).x=-76
=>-19x=-76
=>x=(-76):(-19)
=>x=4
b,(-14)+x-7=-10
=>x-7=-10+14
=>x-7=4
=>x=4+7
=>x=11
tính tổng avf hiệu các đa thức sau
G(x) = 21x^2 + 1 + 17x và H(x) = -2+ 6x^3-12x^2-8
M(x) = 7x^5 + 1 + 17x^4 - 2 và N(x) = 6x^4 - 12x^2 - 23x^4 + x
`G(x)+H(x)=(21x^2+1+17x)+(-2+6x^3-12x^2-8)`
`=21x^2+1+17x-2+6x^3-12x^2-8`
`= 6x^3+(21x^2-12x^2)+17x+(1-2-8)`
`= 6x^3+9x^2+17x-9`
`G(x)-H(x)=(21x^2+1+17x)-(-2+6x^3-12x^2-8)`
`= 21x^2+1+17x+2-6x^3+12x^2+8`
`= -6x^3+(21x^2+12x^2)+17x+(1+2+8)`
`= -6x^3+33x^2+17x+11`
`----`
`M(x)+N(x)=(7x^5 + 1 + 17x^4 - 2)+(6x^4 - 12x^2 - 23x^4 + x)`
`= 7x^5 + 1 + 17x^4 - 2+6x^4 - 12x^2 - 23x^4 + x`
`= 7x^5+(17x^4+6x^4-23x^4)-12x^2+x+(1-2)`
`= 7x^5-12x^2+x-1`
`M(x)-N(x)=(7x^5 + 1 + 17x^4 - 2)-(6x^4 - 12x^2 - 23x^4 + x)`
`= 7x^5 + 1 + 17x^4 - 2-6x^4 + 12x^2 + 23x^4 - x`
`= 7x^5+(17x^4-6x^4+23x^4)+12x^2-x+(1-2)`
`= 7x^5+34x^4+12x^2-x-1`