cho các đường thẳng có phương trình y=(m-1)x+2m .Tìm m để đường thẳng trên cắt 2 trục tọa độ và tạo với 2 trục một tam giác có diện tích bằng 1.
(Đề bài chuẩn ko sai )
Bài 8. Cho đường thẳng có phương trình y = (m - 1)x + 2m (m khác 1). Tìm m để đường thẳng cắt hai trục tọa độ và tạo với hai trục tọa độ một tam giác có diện tích bằng 1 (đơn vị diện tích).
Cho đường thẳng có phương trình y =(m−1)x+ 2m. Tìm m để đường thẳng trên cắt hai trục tọa độ và tạo với hai trục một tam giác có diện tích bằng 1
cắt hai trục tọa độ tao thành tam giác ⇔ m 0
Gọi (d) cắt Ox, Oy lần lượt tại A, B
A( ; 0)OA= trị tuyệt đối của
=> B(0; -2) => OB= trị tuyệt đối của -2
xét tam giác cân AOB có AOB= 90 độ
OA=OB
=> trị tuyệt đố của = trị tuyệt đối của -2
TH1: =2
<=> 2=2m
<=> m=1 (t/m)
TH2 = -2
<=> 2=-2m
<=>m=-1(t/m)
Vậy để d cắt 2 trục tọa độ tạo thành tam giác cân thì m=1 hoặc m=-1
Tim m để đường thẳng y=(m-1)x+2m cắt 2 trục tọa độ và tạo với chúng một tam giác có diện tích bằng 1
Cho hàm số bậc nhất y = (2m + 1)x - 2 (với m là tham số, m khác -1/2 )
Tìm m để đường thẳng (d) cắt các trục tọa độ tạo thành tam giác có diện tích bằng 1(đơn vị diện tích).
cho đường thẳng (d) có phương trình:
\(\left(m+1\right)x+\left(m-2\right)y=3\) (d) ( m là tham số)
Tìm m để (d) cắt 2 trục tọa độ và tạo thành tam giác có diện tích bằng \(\dfrac{9}{2}\)
\(\left(m+1\right)x+\left(m-2\right)y=3\)\(\left(m\ne-1;m\ne2\right)\)
\(y=0\Leftrightarrow x=\dfrac{3}{m+1}\Rightarrow A\left(\dfrac{3}{m+1};0\right)\Rightarrow OA=\left|\dfrac{3}{m+1}\right|\)
\(x=0\Leftrightarrow y=\dfrac{3}{m-2}\Leftrightarrow B\left(0;\dfrac{3}{m-2}\right)\Rightarrow OB=\left|\dfrac{3}{m-2}\right|\)
\(S_{_{ }^{ }\Delta ABO}=\dfrac{9}{2}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}.\dfrac{9}{\left|m+1\right|.\left|m-2\right|}\Leftrightarrow\dfrac{1}{\left|m+1\right|.\left|m-2\right|}=9\Leftrightarrow\left|m+1\right|.\left|m-2\right|=9\Leftrightarrow\left(m+1\right)^2.\left(m-2\right)^2-81=0\Leftrightarrow\left(m^2-m-11\right)\left(m^2-m+7\right)=0\Leftrightarrow\left[{}\begin{matrix}m^2-m-11=0\Leftrightarrow m=\dfrac{1\pm3\sqrt{5}}{2}\left(tm\right)\\m^2-m+7=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow m=\dfrac{1\pm3\sqrt{5}}{2}\)
Cho x = 0 => \(y=\dfrac{3}{m-2}\)
vậy d cắt Oy tại A(0;3/m-2) => Oy = \(\left|\dfrac{3}{m-2}\right|\)
Cho y = 0 => \(x=\dfrac{3}{m+1}\)
vậy d cắt Ox tại B(3/m+1;0) => Ox = \(\left|\dfrac{3}{m+1}\right|\)
Ta có : \(S_{OAB}=\dfrac{1}{2}.OB.OA=\dfrac{1}{2}.\dfrac{9}{\left|\left(m+1\right)\left(m-2\right)\right|}=\dfrac{9}{2}\)
\(\Leftrightarrow\left|\left(m+1\right)\left(m-2\right)\right|=1\Leftrightarrow\left[{}\begin{matrix}m^2-m-3=0\\m^2-m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{13}}{2};m=\dfrac{1-\sqrt{13}}{2}\\m=\dfrac{1+\sqrt{5}}{2};m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
Cho đường thẳng d : y = 2 m + 1 x − 1 . Tìm m để đường thẳng d cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1 2
A. m = 0
B. m = 1
C. m = − 1
D. Cả A và C đều đúng
d ∩ O y = B ⇒ x B = 0 ⇒ y B = − 1 ⇒ B 0 ; − 1 ⇒ O B = − 1 = 1 d ∩ O x = A ⇒ y A = 0 2 m + 1 x – 1 = 0 ⇔ x A = 1 2 m + 1 m ≠ − 1 2
⇒ A 1 2 m + 1 ; 0 ⇒ O A = 1 2 m + 1
S Δ A O B = 1 2 O A . O B = 1 2 .1. 1 2 m + 1 = 1 2 ⇔ | 2 m + 1 | = 1 ⇔ m = 0 m = − 1
Đáp án cần chọn là: D
Phương trình đường thẳng d1: y=(m+1)x +3n+1, m>-1 phương trình đường thẳng d2: y=x+4 và d3: y=2x+4. Để đường thẳng d1, d2 và d3 đồng quy và d1 cắt hai trục tọa độ tạo tam giác có diện tích bằng 4 thì giá trị m+n là
A. 2
B. 1
C. 5
D. 6
Cho đường thẳng (d) có phương trình:
(m+1)x+(m-2)y=3 (d) (m là tham số)
a) Tìm giá trị của m biết đường thẳng (d) đi qua điểm A(-1;-2)
b) Tìm m để (d) cắt 2 trục tọa độ và tạo thành tam giác có diện tích bằng 9/2
Tìm m để đường thẳng d: y=(m2 +2)x+1 tạo với hai trục tọa độ một tam giác có diện tích bằng \(\dfrac{1}{8}\)
Gọi A và B lần lượt là giao điểm của d với Ox và Oy
\(\Rightarrow A\left(-\dfrac{1}{m^2+2};0\right)\) ; \(B\left(0;1\right)\) \(\Rightarrow OA=\dfrac{1}{m^2+2}\) ; \(OB=1\)
\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{8}\Leftrightarrow OA.OB=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{m^2+2}=\dfrac{1}{4}\Rightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)