Cho a,b,c>0 .Cmr:
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Cho x, y, z > 0. CMR :
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Ta có:
\(VT^3=\left(\sqrt[3]{\sqrt{a}.\sqrt{a}.\left(a^2+7bc\right)}+\sqrt[3]{\sqrt{b}.\sqrt{b}.\left(b^2+7ca\right)}+\sqrt[3]{\sqrt{c}.\sqrt{c}.\left(c^2+7ab\right)}\right)^3\)
\(\le\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\left(a^2+b^2+c^2+7ab+7bc+7ca\right)\)
\(\le3\left(a+b+c\right)\left[\left(a+b+c\right)^2+\frac{5}{3}\left(a+b+c\right)^2\right]\)
\(=8\left(a+b+c\right)^3\)
\(\Rightarrow VT\le2\left(a+b+c\right)\)
Cho x, y, z > 0. CMR :
\(\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc}\le2\left(a+b+c\right)\)
Lời giải:
Áp dụng BĐT Holder:
\((\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc})^3\leq (a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)(1+1+1)\)
\(\Leftrightarrow (\sqrt[3]{a^3+7abc}+\sqrt[3]{b^3+7abc}+\sqrt[3]{c^3+7abc})^3\leq 3(a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)\)
Ta cần chứng minh:
\(3(a+b+c)(a^2+7bc+b^2+7ac+c^2+7ab)\leq 8(a+b+c)^3\)
\(\Leftrightarrow 3(a^2+7bc+b^2+7ac+c^2+7ab)\leq 8(a+b+c)^2(*)\)
Thật vậy:
Theo hệ quả của BĐT AM-GM thì \(ab+bc+ac\leq \frac{(a+b+c)^2}{3}\)
Do đó:
\(3(a^2+7bc+b^2+7ac+c^2+7ab)=3[(a+b+c)^2+5(ab+bc+ac)]\)
\(\leq 3[(a+b+c)^2+\frac{5}{3}(a+b+c)^2]=8(a+b+c)^2\)
\((*)\) đúng, ta có đpcm.
Dấu bằng xảy ra khi \(a=b=c\)
Cho 3 số a, b, c thỏa mãn a + b + c =0. CMR:
\(2\left(a^7+b^7+c^7\right)=7abc\left(a^4+b^4+c^4\right)\)
a,b,c dương và ab+bc+ca=3.CMR: A=a^3+b^3+c^3+7abc >= 10
mk học lớp 6 nên ko biết làm nhưng k cho mk nha !!!!!!!!!!!!!!!!!!!!!!
cho a,b,c là các số thực dương khác 0 tm ab+ac+bc=3
cmr \(a^3+b^3+c^3+7abc\ge10\)
a^3+b^3+c^3-3abc=0
<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc=0
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)=0
<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)=0
<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)...
<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
{ Nếu tôi Tl sai thì thôi đừng chửi tôi nha }
cho \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca\ge3\end{matrix}\right.\)
cmr \(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\le2\left(a^2+b^2+c^2\right)\)
Ta có BĐT \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Lợi dụng BĐT Cauchy-Schwarz tao cso:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\)
Đặt \(t=a^2+b^2+c^2\left(t\ge3\right)\) thì cần chứng minh:
\(3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(t+9\right)\le4t^2\Leftrightarrow-\left(t-3\right)\left(4t+9\right)\le0\) (Đúng)
Ta có BĐT \(3\le ab+bc+ca\le a^2+b^2+c^2\)
Và BĐT: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\le\sqrt{9}=3\le a^2+b^2+c^2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le\left(a^2+b^2+c^2\right)\left[a^2+b^2+c^2+3\left(a^2+b^2+c^2\right)\right]\)
\(=4\left(a^2+b^2+c^2\right)=VP^2\)
Xảy ra khi \(a=b=c=1\)
\(a^3-b^3+c^3+3abc\)
\(a^3-b^3-c^3-3abc\)
\(\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3-8\left(a+b+c\right)^3\)
\(2bc\left(b+2c\right)+2ac\left(c-2a\right)-2ab\left(a+2b\right)-7abc\)
Cho x,y,z,a,b,c là các số dương. Cmr:
\(\sqrt[3]{abc}+\sqrt[3]{xyz}\le\sqrt[3]{\left(a+x\right)\left(b+y\right)\left(c+z\right)}\)
Từ đó suy ra:\(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\le2\sqrt[3]{3}\)
Lời giải:
Áp dụng BĐT AM-GM ta có:
\(\frac{a}{a+x}+\frac{b}{b+y}+\frac{c}{c+z}\geq 3\sqrt[3]{\frac{abc}{(a+x)(b+y)(c+z)}}\)
\(\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}\geq 3\sqrt[3]{\frac{xyz}{(a+x)(b+y)(c+z)}}\)
Cộng theo vế:
\(\Rightarrow \frac{x+a}{x+a}+\frac{y+b}{y+b}+\frac{c+z}{c+z}\geq 3.\frac{\sqrt[3]{xyz}+\sqrt[3]{abc}}{\sqrt[3]{(a+x)(b+y)(c+z)}}\)
\(\Rightarrow 3\geq 3.\frac{\sqrt[3]{xyz}+\sqrt[3]{abc}}{\sqrt[3]{(a+x)(b+y)(c+z)}}\)
\(\Rightarrow \sqrt[3]{(a+x)(b+y)(c+z)}\geq \sqrt[3]{abc}+\sqrt[3]{xyz}\)
Ta có đpcm
b) Áp dụng công thức trên, với \(a=\sqrt[3]{3}; b=\sqrt[3]{3^2}+1; c=1; x=\sqrt[3]{3}; y=\sqrt[3]{3^2}-1; z=1\) suy ra:
\(\sqrt[3]{3+\sqrt[3]{3}}+\sqrt[3]{3-\sqrt[3]{3}}\leq \sqrt[3]{(\sqrt[3]{3}+\sqrt[3]{3})(\sqrt[3]{3^2}+1+\sqrt[3]{3^2}-1)(1+1)}=2\sqrt[3]{3}\)
Ta có đpcm.
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\) . CMR : \(\sqrt[3]{\dfrac{a}{b\left(b+2c\right)}}+\sqrt[3]{\dfrac{b}{c\left(c+2a\right)}}+\sqrt[3]{\dfrac{c}{a\left(a+2b\right)}\ge\dfrac{3}{\sqrt[3]{3}}}\)