Ta có BĐT \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
Lợi dụng BĐT Cauchy-Schwarz tao cso:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\)
Đặt \(t=a^2+b^2+c^2\left(t\ge3\right)\) thì cần chứng minh:
\(3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+9\right)\le4\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow3\left(t+9\right)\le4t^2\Leftrightarrow-\left(t-3\right)\left(4t+9\right)\le0\) (Đúng)
Ta có BĐT \(3\le ab+bc+ca\le a^2+b^2+c^2\)
Và BĐT: \(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)
\(\Rightarrow a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(\le\sqrt{9}=3\le a^2+b^2+c^2\)
Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2=\left(\sqrt{a+3}+\sqrt{b+3}+\sqrt{c+3}\right)^2\)
\(\le\left(1+1+1\right)\left(a+b+c+9\right)\)
\(\le\left(a^2+b^2+c^2\right)\left[a^2+b^2+c^2+3\left(a^2+b^2+c^2\right)\right]\)
\(=4\left(a^2+b^2+c^2\right)=VP^2\)
Xảy ra khi \(a=b=c=1\)