Tìm số tự nhiên x:
a) 2x : 4 = 16
b) 4x-3 = 256
c) (2x + 1)3 = 343
d) 10 + 2x = 45 : 43
Tìm số tự nhiên x:
a) 2x : 4 = 16
b) 4x-3 = 256
c) (2x + 1)3 = 343
d) 10 + 2x = 45 : 43
a) \(2^x:4=16\\ \Rightarrow2^x=64\\ \Rightarrow2^x=2^6\\ \Rightarrow x=6\)
b) \(4^{x-3}=256\\ \Rightarrow4^{x-3}=4^4\\ \Rightarrow x-3=4\\ \Rightarrow x=7\)
c) \(\left(2x+1\right)^3=343\\ \Rightarrow\left(2x+1\right)^3=7^3\\ \Rightarrow2x+1=7\\ \Rightarrow x=3\)
d) \(10+2x=4^5:4^3\\ \Rightarrow10+2x=16\\ \Rightarrow x=3\)
a,2^x:4=16
2^x=16.4=64
2^x=2^6
=>x=6
b,4^x-3=256
4^x-3=4^4
=>x-3=4
x=4+3=7
c,(2x+1)^3=343
(2x+1)^3=7^3
=>2x+1=7
2x=7-1=6
x=6:2=3
d,10+2x=4^5:4^3
10+2x=4^2=16
2x=16-10=6
x=6:2=3
Tìm số tự nhiên x biết: 10 + 2x = 45:43
10 + 2x = 45 : 43
10 + 2x = 45 - 3
10 + 2x = 42
10 + 2x = 16
2x = 16 - 10
2x = 6
x = 6 : 2
x = 3
Vậy x = 3
Tìm số tự nhiên x biết: 10 + 2x = 45:43
tìm x:
a) \(\left(2x+5\right)\left(4x-10\right)+4x.\left(3-2x\right)^2=0\)
b) \(\left(2x-3\right)^2-\left(3x+1\right)^2=0\)
a: =>8x^2-20x+20x-50+4x(4x^2-12x+9)=0
=>8x^2-50+8x^3-48x^2+36x=0
=>8x^3-40x^2+36x-50=0
=>\(x\simeq4,29\)
b: =>(2x-3-3x-1)(2x-3+3x+1)=0
=>(-x-4)(5x-2)=0
=>x=2/5 hoặc x=-4
2. tìm x
a, \(3\sqrt{2x}\) + \(\sqrt{8x}\) - \(\sqrt{18x}\)= 16
b, \(\sqrt{4x+20}\) - \(3\sqrt{x+5}\) + \(\dfrac{4}{3}\) \(\sqrt{9x+45}\) = 6
\(a,3\sqrt{2x}+\sqrt{8x}-\sqrt{18x}=16\left(dk:x\ge0\right)\\ \Leftrightarrow3\sqrt{2x}+2\sqrt{2x}-3\sqrt{2x}=16\\ \Leftrightarrow\sqrt{2x}\left(3+2-3\right)=16\\ \Leftrightarrow2\sqrt{2x}=16\\ \Leftrightarrow\sqrt{2x}=8\\ \Leftrightarrow\left|2x\right|=64\\ \Leftrightarrow2x=64\\ \Leftrightarrow x=32\left(tm\right)\)
Vậy \(S=\left\{32\right\}\)
\(b,\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\left(dk:x\ge-5\right)\)
\(\Leftrightarrow\sqrt{4\left(x+5\right)}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9\left(x+5\right)}=6\\ \Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}\left(2-3+4\right)=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=2\\ \Leftrightarrow\left|x+5\right|=4\\ \Leftrightarrow x+5=4\\ \Leftrightarrow x=-1\left(tm\right)\)
Vậy \(S=\left\{-1\right\}\)
Tìm x:
a) 3x ( 12x - 4 ) - 9x( 4x - 3 ) = 30
b) x( 5 - 2x) + 2x( x - 1) = 15
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x ( 12x - 4 ) - 9x( 4x - 3 ) = 30`
`=> 3x (12x-4) - 3*3x (4x - 3) = 30`
`=> 3x [12x - 4 - 3(4x-3)] = 30`
`=> 3x (12x - 4 - 12x + 9) = 30`
`=> 3x (-4+9)=30`
`=> 3x*5=30`
`=> 3x=6`
`=> x=2`
Vậy, `x=2`
`b)`
`x( 5 - 2x) + 2x( x - 1)`
`=> x(5-2x) + 2x^2 - 2x=15`
`=> 5x - 2x^2 + 2x^2 - 2x =15`
`=> 3x = 15`
`=> x=5`
Vậy, `x=5.`
a: =>36x^2-12x-36x^2+27x=30
=>15x=30
=>x=2
b: =>5x-2x^2+2x^2-2x=15
=>3x=15
=>x=5
tìm x:
a)3(2x-3)+2(2-x)=-3
b)2x(x2-2)+x2(1-2x)-x2=-12
c)3x(2x+3)-(2x+5)(3x-2)=8
d)4x(x - 1) - 3(x2-5)-x2=(x-3)-(x+4)
e)2(3x-1)(2x+5)-6(2x-1)(x+2)=-6
a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)
\(\Leftrightarrow6x-9+4-2x=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
Tìm STN x, biết:
a) (4x - 1)2 - 9 = 16
b) 2x + 2x + 3 = 144
c) 32x + 3 = 9x + 3
\(a,\Rightarrow\left(4x-1\right)^2=25=5^2=\left(-5\right)^2\\ \Rightarrow\left[{}\begin{matrix}4x-1=5\\4x-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\\ b,\Rightarrow2^x\left(1+2^3\right)=144\\ \Rightarrow2^x=144:9=16=2^4\Rightarrow x=4\\ c,\Rightarrow3^{2x+3}=3^{2\left(x+3\right)}\\ \Rightarrow2x+3=2x+6\Rightarrow0x=3\left(vô.lí\right)\\ \Rightarrow x\in\varnothing\)
B1: Tìm x biết:
a, 3x = 81 b, 5 . 4x = 80
c, 2x = 45 : 43 d, 3 . 2x+1 - 32 = 15
e, 5x-1 + 311 : 39 = 34 h, 43 . 4x-1 = 64
a: 3x=81
nên x=27
b: \(5\cdot4^x=80\)
\(\Leftrightarrow4^x=16\)
hay x=2
c: \(2^x=4^5:4^3\)
\(\Leftrightarrow2^x=2^4\)
hay x=4
Tìm x:
a) x3-9x2-4x-36=0
b)x-2/4=2x+1/3
b) Ta có: \(\dfrac{x-2}{4}=\dfrac{2x+1}{3}\)
\(\Leftrightarrow3\left(x-2\right)=4\left(2x+1\right)\)
\(\Leftrightarrow3x-6=8x+4\)
\(\Leftrightarrow3x-8x=4+6\)
\(\Leftrightarrow-5x=10\)
hay x=-2
Vậy: x=-2
a) x3-9x2-4x-36=0
⇔ x2(x-9)-4(x-9)=0
⇔ (x-9)(x2-4)=0
⇒ Xảy ra 2 trường hợp:
- TH1: x-9=0 ⇔ x=9
- TH2: x2-4=0 ⇔ x=2 hoặc x=-2
Vậy x=9 hoặc x=2 hoặc x=-2.