Những câu hỏi liên quan
Đỗ Thu Hà
Xem chi tiết
Trần Thùy Dương
28 tháng 5 2018 lúc 20:51

Ta có :

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)       (1)

Vì \(a,b,c\)là độ dài 3 cạnh của một tam giác nên ta có :

\(a^2< a.\left(b+c\right)\)

\(\Rightarrow a^2< ab+ac\)

Tương tự :

\(b^2< ab+bc\)

\(c^2< ca+bc\)

\(\Rightarrow a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)              (2)

Từ (1) và (2)

=> Đpcm

ONLINE SWORD ART
Xem chi tiết
lê thành đạt
18 tháng 4 2022 lúc 21:08

non vãi loonf đến câu này còn đéo bt ko bt đi học để làm gì

 

lê thành đạt
18 tháng 4 2022 lúc 21:08

đúng trẻ trâu

shinichi kudo
Xem chi tiết
Trần Đức Thắng
12 tháng 6 2015 lúc 14:29

: Nhầm đề bài rồi a^2 + b^2 + c^ 2 > 2(ab+bc+ac)

Mr Lazy
12 tháng 6 2015 lúc 20:02

\(ab+bc=b\left(a+c\right)>b.b=b^2\)

\(bc+ca=c\left(a+b\right)>c.c=c^2\)

\(ca+ab=a\left(b+c\right)>a.a=a^2\)

\(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)

sat thu kid
2 tháng 3 2017 lúc 20:05

bị đặc đặc cái tên shinichi koudo chú có hình shinichi đâu

Anhh Thưư
Xem chi tiết
Mai Linh
13 tháng 5 2016 lúc 21:52

ta có: \(a^2\)+\(b^2\)+\(c^2\)\(\ge\)ab+bc+ca

<=> \(a^2\)+\(b^2\)+\(c^2\)-ab-bc-ca\(\ge\)0

<=>2\(a^2\)+2\(b^2\)+2\(c^2\)-2ab-2bc-2ca\(\ge\)0

<=> (\(a^2\)-2ab+\(b^2\))+(\(b^2\)-2bc+\(c^2\))+(\(c^2\)-2ca+\(a^2\))\(\ge\)0

<=> \(\left(a-b\right)^2\)+\(\left(b-c\right)^2\)+\(\left(c-a\right)^2\)\(\ge\)0 (luôn đúng)

dấu = xảy ra khi a =b=c

 

Nguyễn Hoàng Anh Vũ
23 tháng 5 2016 lúc 16:32

a&#x2212;b&lt;c&lt;=&gt;a2+b2&#x2212;2ab&lt;c2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

b&#x2212;c&lt;a&lt;=&gt;b2+c2&#x2212;2bc&lt;a2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

a&#x2212;c&lt;b&lt;=&gt;a2+c2&#x2212;2ac&lt;b2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

2(a2+b2+c2)&#x2212;2(ab+bc+ac)&lt;a2+b2+c2&lt;=&gt;2(ab+ac+bc)&gt;a2+b2+c2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> (đpcm)

 
Trịnh Thành Công
13 tháng 5 2016 lúc 21:43

Bài này khó lắm tớ mới làm có vế trái thôi

Yeutoanhoc
Xem chi tiết
Trần Minh Hoàng
1 tháng 6 2021 lúc 7:12

Áp dụng bđt AM - GM ta có \(\sqrt{\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a^2+\left(b+c\right)^2}{2a\left(b+c\right)}+1\right)=\dfrac{1}{2}\dfrac{\left(a+b+c\right)^2}{2a\left(b+c\right)}\)

\(\Rightarrow\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}\ge\dfrac{2\sqrt{2}a\left(b+c\right)}{\left(a+b+c\right)^2}\).

Tương tự,...

Cộng vế với vế ta có \(\sqrt{\dfrac{a\left(b+c\right)}{a^2+\left(b+c\right)^2}}+\sqrt{\dfrac{b\left(c+a\right)}{b^2+\left(c+a\right)^2}}+\sqrt{\dfrac{c\left(a+b\right)}{c^2+\left(a+b\right)^2}}\ge\dfrac{4\sqrt{2}\left(ab+bc+ca\right)}{\left(a+b+c\right)^2}\). (*)

Mặt khác do a, b, c là độ dài ba cạnh của 1 tam giác nên \(a\left(b+c-a\right)+b\left(c+a-b\right)+c\left(a+b-c\right)>0\Rightarrow2\left(ab+bc+ca\right)\ge a^2+b^2+c^2\Rightarrow4\left(ab+bc+ca\right)\ge\left(a+b+c\right)^2\). (**)

Từ (*) và (**) ta có đpcm.

 

Thảo Đỗ Phương
Xem chi tiết
Duc nguyen tri
30 tháng 3 2017 lúc 21:15

nếu là \(a^2+b^2+c^2< 2\) thi minh lam dc                                    

Họ Và Tên
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 8 2021 lúc 12:05

\(p+q=1\Rightarrow q=1-p\)

BĐT cần c/m trở thành:

\(pa^2+\left(1-p\right)b^2-p\left(1-p\right)c^2>0\)

\(\Leftrightarrow p^2c^2+\left(a^2-b^2-c^2\right)p+b^2>0\) (1)

\(\Delta=\left(a^2-b^2-c^2\right)^2-4b^2c^2=\left(a^2-b^2-c^2+2bc\right)\left(a^2-b^2-c^2-2bc\right)\)

\(=\left(a^2-\left(b-c\right)^2\right)\left(a^2-\left(b+c\right)^2\right)\)

\(=\left(a+c-b\right)\left(a+b-c\right)\left(a-b-c\right)\left(a+b+c\right)< 0\) theo BĐT tam giác

\(\Rightarrow\) (1) luôn đúng

Nguyễn Việt Lâm
21 tháng 8 2021 lúc 18:44

Ko xài delta thì biến đổi tương đương (1) xuống bằng cách thêm bớt là được:

\(\left(1\right)\Leftrightarrow p^2c^2+2.\dfrac{a^2-b^2-c^2}{2c}.pc+\left(\dfrac{a^2-b^2-c^2}{2c}\right)^2+b^2-\left(\dfrac{a^2-b^2-c^2}{2c}\right)^2>0\)

\(\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{4b^2c^2-\left(a^2-b^2-c^2\right)^2}{4c^2}>0\)

\(\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{\left(2bc+a^2-b^2-c^2\right)\left(2bc-a^2+b^2+c^2\right)}{4c^2}>0\)

\(\Leftrightarrow\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{\left[a^2-\left(b-c\right)^2\right]\left[\left(b+c\right)^2-a^2\right]}{4c^2}>0\)

\(\Leftrightarrow\Leftrightarrow\left(pc+\dfrac{a^2-b^2-c^2}{2c}\right)^2+\dfrac{\left(a+b-c\right)\left(a+c-b\right)\left(a+b+c\right)\left(b+c-a\right)}{4c^2}>0\) (luôn đúng theo BĐT tam giác)

Vô Danh
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Trần Thị Hà Phương
24 tháng 12 2015 lúc 17:33

Áp dụng bất đẳng thức tam giác có a+b>c

                                                            <=>ac+bc > c2  (c>0)

<=>a+b
   Tương tự có:ab+cb>b2    ac+ab >a2ab+bc>b2,ac+ab>a2

Cộng các bất đẳng thức trên ra điều phải chứng minh

2(a2+b2+c2)-2(ab+bc+ac)<a2+b2+c2<=>2(a2+b2+c2)>a2+b2+c2 (dpcm)